Capital Market Integration and Growth Across the United States

Leonardo D'Amico

Maxim Alekseev

Joint Center for Housing Studies

February 21, 2025

American historical development characterized by:

- (1) Rise of national financial markets: reallocate savings from areas with excess supply (Northeast) to areas with excess demand (booming South & West)
- (2) Move of workers along the same geographical lines

Usually treated as parallel but distinct processes

American historical development characterized by:

- (1) Rise of national financial markets: reallocate savings from areas with excess supply (Northeast) to areas with excess demand (booming South & West)
- (2) Move of workers along the same geographical lines

Usually treated as parallel but distinct processes

This paper. Did (1) cause part of (2)? Answer in two steps

- **Q1.** What drives the geographic integration of financial markets?
- **Q2.** How does this integration shape real economic activity?

American historical development characterized by:

- (1) Rise of national financial markets: reallocate savings from areas with excess supply (Northeast) to areas with excess demand (booming South & West)
- (2) Move of workers along the same geographical lines

Usually treated as parallel but distinct processes

This paper. Did (1) cause part of (2)? Answer in two steps

- **Q1.** What drives the geographic integration of financial markets?
- **Q2.** How does this integration shape real economic activity?

Setting. Study US banking markets before branching deregulation (1953-82)

American historical development characterized by:

- (1) Rise of national financial markets: reallocate savings from areas with excess supply (Northeast) to areas with excess demand (booming South & West)
- (2) Move of workers along the same geographical lines

Usually treated as parallel but distinct processes

This paper. Did (1) cause part of (2)? Answer in two steps

- **Q1.** What drives the geographic integration of financial markets?
- Q2. How does this integration shape real economic activity?

Setting. Study US banking markets before branching deregulation (1953-82)

Implications. Lessons for current context where capital markets are not integrated (developing countries, Eurozone) & current US place-based investment subsidies

THE AMERICAN MID-CENTURY EXPERIENCE

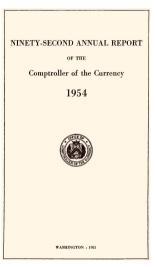
Digitize new state-level bank data. Two main new facts:

- Substantial financial integration: narrowing of regional differences in interest rates
- GDP and population growth strongly correlated with initial capital-scarcity

Explain financial integration. Simple banking theory, tests and quantifications

Quantify real effects. Add banks to state-of-the-art dynamic spatial model:

- Endogenous regional diff. in bank loan rates + fwd. look. migration & investment
- Fin. integr. explains 20% rise of capital-scarce South & West and North's decline
- Aggregate effects (paper)

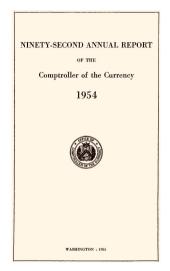

Implications. Policy counterfactuals on deregulation (paper)

• Effects of deregulation much larger than previously thought

EMPIRICAL FACTS

Setting and Data

- American banking system pre-deregulation
 - Banks prohibited from branching out of state
 - Reg. Q capped rates offered on deposits
- Most commercial lending short term
 - $\circ~62\%\leqslant 6$ months (Redenius 2006), for working capital

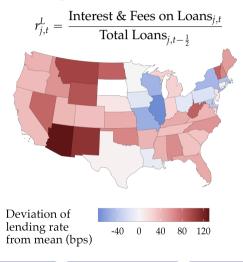


Setting and Data

- American banking system pre-deregulation
 - Banks prohibited from branching out of state
 - Reg. Q capped rates offered on deposits
- Most commercial lending short term
 - $\circ~62\%\leqslant 6$ months (Redenius 2006), for working capital

Data.

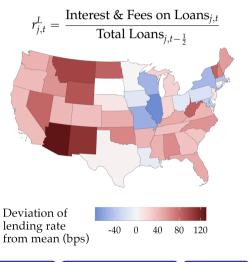
- 1953-70: digitize state-level OCC reports (1953-70)
- 1960-83: bank-level call reports
 - FOIA before 1975 (Drechsler et al. 2020), public after
- Liabilities, assets, income, expenses, reserves



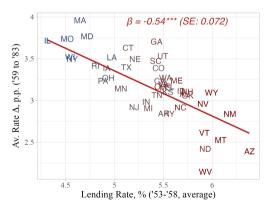
FACT 1. SEGMENTATION AND CONVERGENCE

$$r_{j,t}^{L} = rac{ ext{Interest \& Fees on Loans}_{j,t}}{ ext{Total Loans}_{j,t-rac{1}{2}}}$$

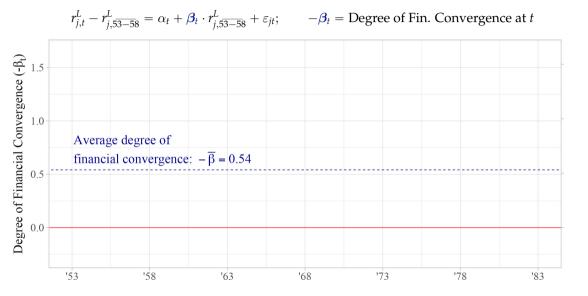
FACT 1. SEGMENTATION AND CONVERGENCE


Segmentation in 1953-58

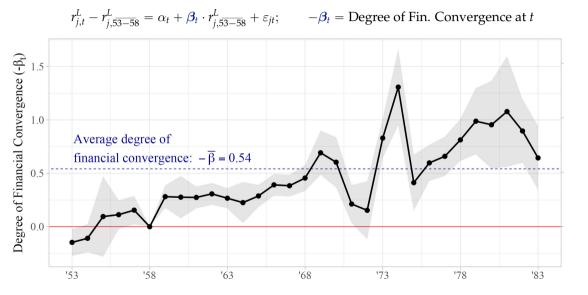
(Correlates of Spreads) (Correlation w. Mortgage Rates) (Maps over Time) (Time Series

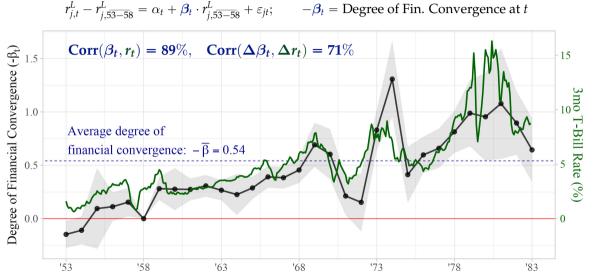

FACT 1. SEGMENTATION AND CONVERGENCE

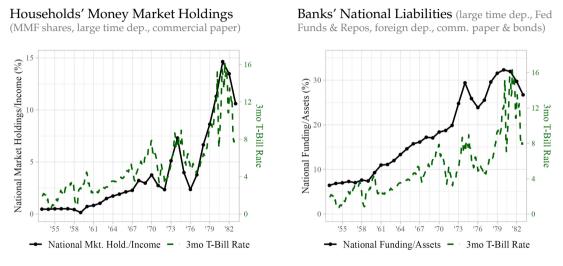
Segmentation in 1953-58



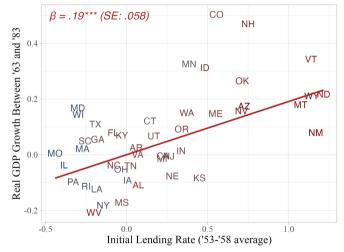
Convergence in 1959-1983


$$r_{j,\overline{59-83}}^{L} - r_{j,\overline{53-58}}^{L} = \alpha + \beta \cdot r_{j,\overline{53-58}}^{L} + \varepsilon_{j}$$

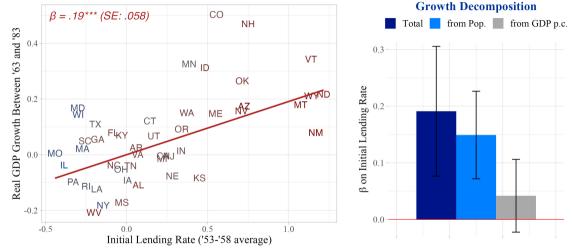

EXPLAINING THE DRIVERS: TIME-VARYING CONVERGENCE


EXPLAINING THE DRIVERS: TIME-VARYING CONVERGENCE

EXPLAINING THE DRIVERS: TIME-VARYING CONVERGENCE



AGGREGATE TRENDS: TIME-VARYING RISE OF NAT. MARKETS


In changes (Local Holdings/Borrowings) (Local Holdings/Borrowings in Changes)

FACT 2. HIGHER GDP GROWTH IN INITIALLY HIGH-RATE AREAS

Controls: Jan. temp., Bartik sect. dem. shock, Bartik agricultural dem. shock, Right-to-Work state, % GDP in Oil in 1950

FACT 2. HIGHER GDP GROWTH IN INITIALLY HIGH-RATE AREAS

Controls: Jan. temp., Bartik sect. dem. shock, Bartik agricultural dem. shock, Right-to-Work state, % GDP in Oil in 1950 Robustness: holds also unconditionally & within region. Effects concentrated in sectors more dependent on financing (Table with Outcomes) (Region FEs) (Migration vs. Fertility) (Sectors) (Dependence on External Financing

THEORY

OBJECTIVES AND INGREDIENTS

Objectives

- Role of r_t in driving financial integration
 - $\circ~$ In paper, show other traditional stories (risk, competition) do not square w. data
- Role of financial integration in driving population growth
 - Conventional approach: fin. integration increases investment, no role for pop.
 - But here fin. integration within country! Labor is mobile & important in the data

OBJECTIVES AND INGREDIENTS

Objectives

- Role of r_t in driving financial integration
 - $\circ~$ In paper, show other traditional stories (risk, competition) do not square w. data
- Role of financial integration in driving population growth
 - Conventional approach: fin. integration increases investment, no role for pop.
 - $\circ~$ But here fin. integration within country! Labor is mobile & important in the data

Ingredients

- Many regions indexed by *j* with banks, firms, households; continuous time *t*
 - Lending markets are regional (branching prohibited/capital flows limited)
- Within period, households store liquidity, firms borrow to pay inputs
- Across periods, migration choices and investment choices

STATIC CHOICES

Timing. Firms pay inputs in the morning \rightarrow produce \rightarrow sell in the evening

Firms. Cobb-Douglas, finance share ξ_i of inputs w. bank loans

Households. Consume in the evening, hold liquidity in deposits or bonds that pay r_t :

- Have taste for liquidity of $\chi_j + \varepsilon$; $\varepsilon \sim \text{Exp}(\phi)$ random, χ_j regional shifter
- Choose dep. if $\chi_j + \varepsilon > r_t$, elasticity of deposit outflows ϕ

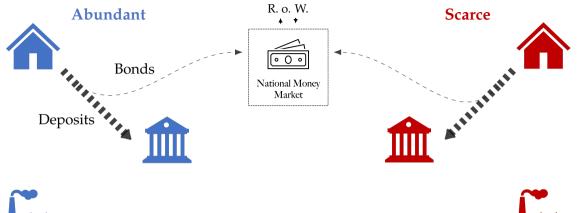
Banks. Intermediate: get liquidity from households, lend to firms

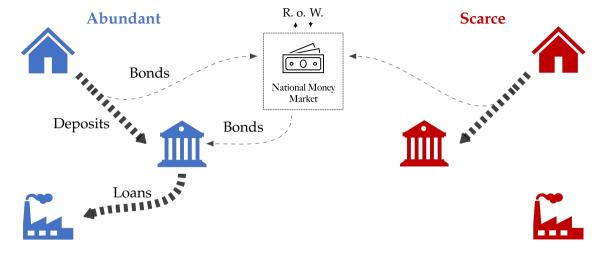
• Issue bonds if deposits < loans, at frictions! Cost: θ_t

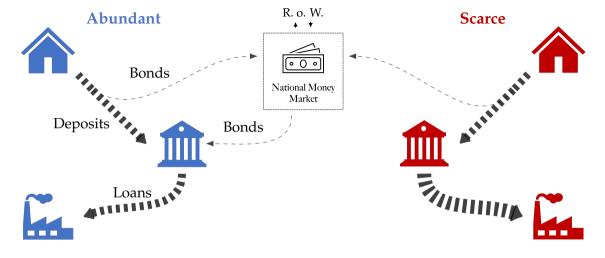
$$\left(1 - \frac{\text{Deposits}_{jt}}{\text{Loans}_{jt}}\right)^2 \cdot \text{Loans}_{jt}$$

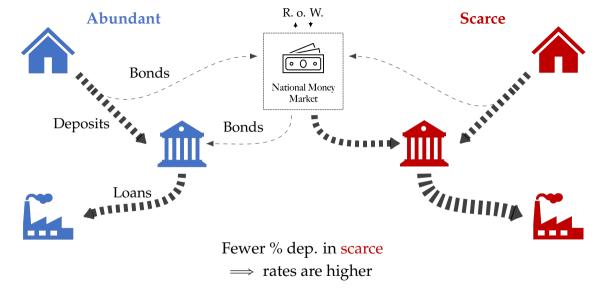
Friction

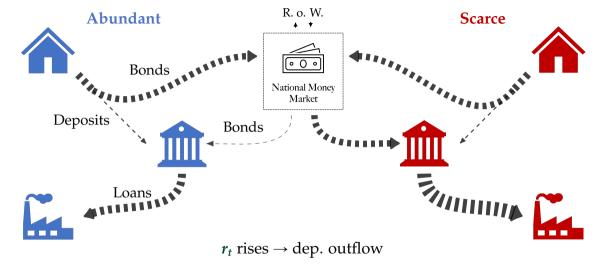
Scarce

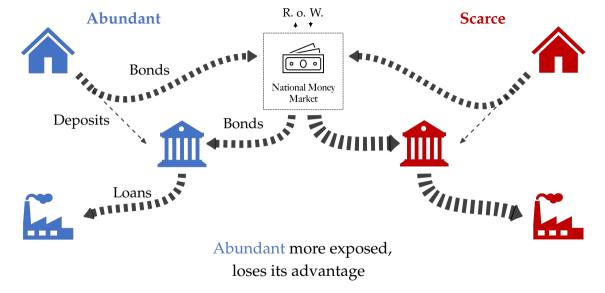


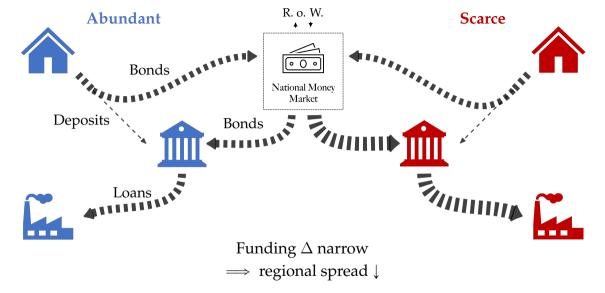


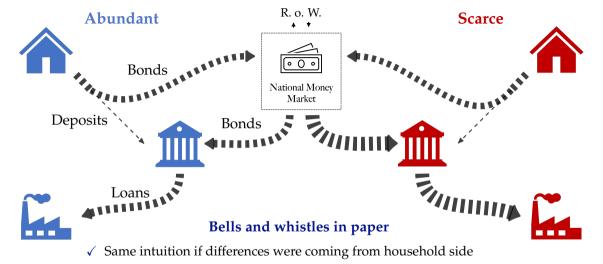


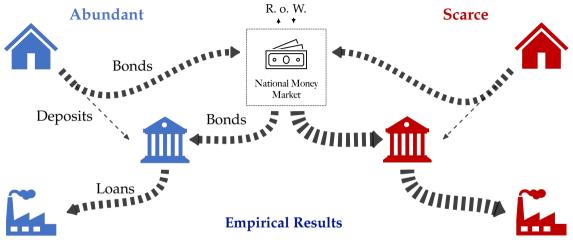












- \checkmark Same with interbank market
- $\checkmark\,$ Can allow remunerated retail deposits, but need some inframarginal
- $\checkmark\,$ Cost of ext. financing not quadratic, up to cvxity not too extreme

- \checkmark Increase in r_t have larger effects in initially low-rate/high-dep. states
- Quantitatively: 51% of observed integration due to \uparrow in r_t
 - Technological development ($\downarrow \theta_t$) also important, together 89%

REAL EFFECTS AND DYNAMIC CHOICES

Firms: borrow at spread $s_{it}^L = r_{it}^L - r_t$ from local bank, affects costs

- Hire N_{jt} and rent K_{jt} , costs: $(\underbrace{w_{jt}N_{jt} + r_{jt}^{K}K_{jt}}_{K_{jt}}) \cdot (\underbrace{1 + r_{t} + \xi_{j} \cdot s_{jt}^{L}}_{K_{jt}})$
- s_{jt}^L affects w_{jt} , r_{jt}^K , scale of pass-through depends on $\mathbb{E}[\xi_j] = .51$ (corp. loans/all debt)

Households (Caliendo et al. 2019): migration choices

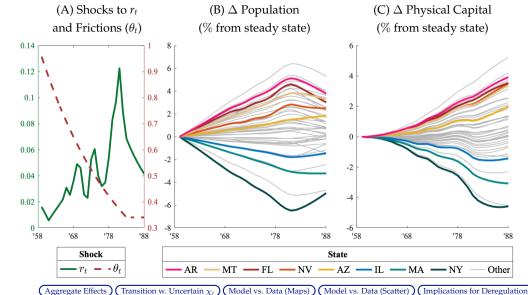
- Enjoy amenities and consumption, pay housing
- Local spread \rightarrow affects wages \rightarrow migration, according to migration elasticity

Physical Capitalist (Kleinman et al. 2023): investment choices

- Immobile, make standard consumption-saving decisions
- Local spread \rightarrow rental rate \rightarrow investment

Assumptions and Quantitative Exercise

Two quantitatively important assumptions.


- 1 No household borrowing
 - Angelova and D'Amico (2024): very small regional differences in mortgage rates
- 2 Firm borrowing is short term
 - Firm loans mostly for working capital: 62% maturity < 6 months (Redenius 2006)

Quantitative exercise. States' response to fin. integration in 1958-83:

- Full transition dynamics to sources of integration estimated in paper:
 - \uparrow in r_t , \downarrow frictions in accessing markets (θ_t , tech. improvement)

Migration elasticity. Estimated from full transition dyn. ("Master Equation", Bilal 2023)

• Target most \triangle GDP comes from \triangle pop., absolute \triangle GDP untargeted

REGIONAL GROWTH GENERATED BY FINANCIAL SHOCKS

POLICY IMPLICATIONS

Taking stock.

- High nominal rates are a powerful driver of financial integration
- Financial integration can have important consequences on growth

Implications for policy today.

- 1. Cheap financing important for regional growth, sizable spatial consequences
 - Implications for current place-based investment policies
- 2. Removing barriers to capital mobility more effective in low rate environments
 - Deregulation allows banks to move deposits across space
 - $\circ~$ More powerful in low rate environments: more deposits \rightarrow more to reallocate
 - $\circ~$ US branching dereg. $2\times$ as powerful if it had happened in 1950s instead of 1980s

SUMMARY AND FUTURE DIRECTIONS

This paper. Study mobility of financial capital jointly with mobility of labor

- Financial integr. of '59-'83 explains part of America's move to South & West
- Aggregate rates can be a powerful driver of financial integration
- Deregulation is more powerful in low-rate environments

SUMMARY AND FUTURE DIRECTIONS

This paper. Study mobility of financial capital jointly with mobility of labor

- Financial integr. of '59-'83 explains part of America's move to South & West
- Aggregate rates can be a powerful driver of financial integration
- Deregulation is more powerful in low-rate environments

Today. Eurozone comes out of a protracted low-rate environment

• % of money market holdings by EU households far lower than US in the 1980s

SUMMARY AND FUTURE DIRECTIONS

This paper. Study mobility of financial capital jointly with mobility of labor

- Financial integr. of '59-'83 explains part of America's move to South & West
- Aggregate rates can be a powerful driver of financial integration
- Deregulation is more powerful in low-rate environments

Today. Eurozone comes out of a protracted low-rate environment

• % of money market holdings by EU households far lower than US in the 1980s

Agenda moving forward. Capital markets and local development

- US mortgage market integration and development (w. V. Angelova)
- Credit conditions and resilience of local labor mkts (w. G. Hanson and J. Katz)

Thank you!

GROWTH: MODEL VS. DATA

0.5

0.4

0.3

0.2

0

-0.1

-0.2

-0.3

MO

NY

Data 0.1

GDP Growth between 1963 and 1983

UT CA VTTN ID

NE.

n

Model

IA

wi

IL POH

MN

MA

RI

COWY AZ

ок _{NH_{GA}}

β **∓**L3.963

NV

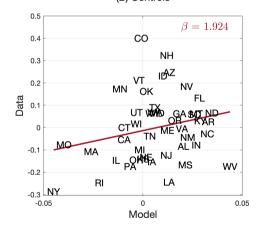
SC

MATY

IN

NHO

WV


0.05

'nм

OFMS

ME

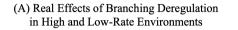
NJ

 \odot

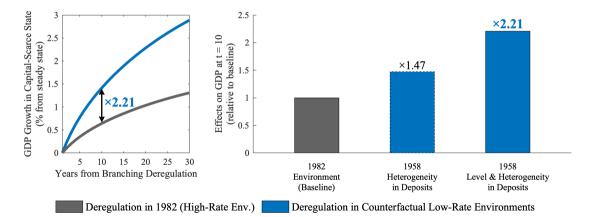
IMPLICATIONS FOR US BRANCHING DEREGULATION

- From 1982 onwards: start of branching deregulation
- Banks could now locate freely in all states \rightarrow full integration
 - Very large literature that studied its effects (Jayaratne and Strahan 1996)
 Influential with policymakers (e.g. cited in Draghi 2018)

IMPLICATIONS FOR US BRANCHING DEREGULATION


- From 1982 onwards: start of branching deregulation
- Banks could now locate freely in all states \rightarrow full integration
 - Very large literature that studied its effects (Jayaratne and Strahan 1996)
 Influential with policymakers (e.g. cited in Draghi 2018)
- Occurred after a very high rate environment
 - Markets already did part of the work, spreads much smaller than in the '50s
 - Liquidity moved to national market, less "reshuffling" of liquidity left to do

IMPLICATIONS FOR US BRANCHING DEREGULATION


- From 1982 onwards: start of branching deregulation
- Banks could now locate freely in all states \rightarrow full integration
 - Very large literature that studied its effects (Jayaratne and Strahan 1996)
 Influential with policymakers (e.g. cited in Draghi 2018)
- Occurred after a very high rate environment
 - Markets already did part of the work, spreads much smaller than in the '50s
 - Liquidity moved to national market, less "reshuffling" of liquidity left to do
- US deregulation in low-rate environment would have been more powerful

Conclude

Smaller Effects of Dereg. In High-Rate Environments \odot

(B) Effects at t = 10, Relative to Deregulation in 1982, for Different Counterfactual Low-Rate Environments

EXTRA SLIDES

Bank Lending Channel of Monetary Policy (Bernanke and Gertler 1995; Kashyap and Stein 1995; 2000; Bernanke et al. 1999, ... and many more)

• \uparrow r_t , \downarrow deposits as in Drechsler et al. (2017): here bites heterogeneously across space

Bank Lending Channel of Monetary Policy

• \uparrow r_t , \downarrow deposits as in Drechsler et al. (2017): here bites heterogeneously across space

Bank Lending Channel of Monetary Policy

• \uparrow r_t , \downarrow deposits as in Drechsler et al. (2017): here bites heterogeneously across space

Financial Convergence in 20th Century America (Bogue 1955; Davis 1965; Schaaf 1966; Sylla 1969, 1972, 1975; Williamson 1974; James 1976a, 1976b; Rockoff 1977; Bodenhorn 1992, 1995; Gendreau 1999; Smiley 1975, 1981, 1985; Sushka and Barrett 1984, 1985; Ostas 1977; Eichengreen 1984, 1987; Snowden 1987; Redenius 2006; Angelova and D'Amico 2024)

• New channel of integration \rightarrow **depends on** r_t : **time varying & not monotonic**

Bank Lending Channel of Monetary Policy

• \uparrow r_t , \downarrow deposits as in Drechsler et al. (2017): here bites heterogeneously across space

Financial Convergence in 20th Century America

• New channel of integration \rightarrow **depends on** r_t : **time varying & not monotonic**

Bank Lending Channel of Monetary Policy

• \uparrow r_t , \downarrow deposits as in Drechsler et al. (2017): here bites heterogeneously across space

Financial Convergence in 20th Century America

• New channel of integration \rightarrow **depends on** r_t : **time varying & not monotonic**

Economic Convergence in 20th Century America (Steckel 1983; Greenwood and Hunt 1984; Long 1988; Barro and Martin 1992; Greenwood 1997; Holmes 1998; Haines 2000; Glaeser and Tobio 2008; Molloy et al. 2011; Zimran 2024)

• New explanation for America's move to South & West: financial integration

Bank Lending Channel of Monetary Policy

• \uparrow r_t , \downarrow deposits as in Drechsler et al. (2017): here bites heterogeneously across space

Financial Convergence in 20th Century America

• New channel of integration \rightarrow **depends on** r_t : **time varying & not monotonic**

Economic Convergence in 20th Century America

• New explanation for America's move to South & West: financial integration

Bank Lending Channel of Monetary Policy

• \uparrow r_t , \downarrow deposits as in Drechsler et al. (2017): here bites heterogeneously across space

Financial Convergence in 20th Century America

• New channel of integration \rightarrow **depends on** r_t : **time varying & not monotonic**

Economic Convergence in 20th Century America

• New explanation for America's move to South & West: financial integration

Dynamic Spatial Models (Caliendo et al. 2019; Ramos-Menchelli and Van Doornik 2022; Kleinman et al. 2023; Bilal and Rossi-Hansberg 2023)

• Introduce banks in spatial dynamic GE models (Bilal and Rossi-Hansberg 2023)

FULL RELATED LITERATURE AND CONTRIBUTIONS

Banks and local labor markets (Guiso et al. 2004; Becker 2007; Paravisini 2008; Nguyen 2019; Greenstone et al. 2020, 2020; Granja et al. 2022; Gilje et al. 2016; Cortés and Strahan 2017; Supera 2021; Maingi 2023): financial int. mattered for American development & can study shocks across markets in spatial equilibrium (Mian et al. 2022; Catherine et al. 2022; Herreño 2023)

Deposits Outflows and r_t (Berger and Hannan 1989; Diebold and Sharpe 1990; Hannan and Berger 1991; Driscoll and Judson 2013; Drechsler et al. 2017, 2021; Drechsler et al. 2023; Koont et al. 2023; Lu et al. 2024; Erel et al. 2024; Haendler 2022; Jiang et al. 2022; Koont 2023): gives rise to our channel

• Implications for e-banking: allows deposits to be sourced without physical (local) branch

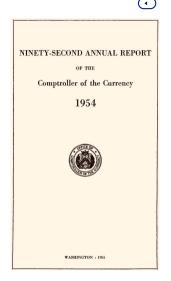
Regionally Heterogeneous Passthrough of Monetary Policy (Fratantoni and Schuh 2003; Beraja et al. 2019; Alpanda and Zubairy 2019; Bellifemine et al. 2023; Rogers 2023): can come from frict. mobility of fin. capital Finance in Spatial Models (Ramos-Menchelli and Van Doornik 2022; Maingi 2023; Morelli et al. 2024; Oberfield et al. 2024): first with endogenous lending differentials & real dynamics
1980s Branching Deregulation (Jayaratne and Strahan 1996; Kroszner and Strahan 1999, ... and many many others): occurred after exceptionally high r_t, mkts already quite integrated, smaller effects

• Implications for Eurozone today, coming out of protracted low rate environment

HISTORICAL SETTING

"Ours is a country predominantly of independent local banks" Thomas McCabe, the Chairman of the Fed, Commencement address of 1950

- 13,446 commercial banks, mostly local
- Tight regulation, creating frictions
 - Branching restricted both across and within states (Mengle, 1990)
 - Reg. Q caps deposit rates, esp. short maturities & demand (§19(i), Fed. Res. Act)
- Supervised by Office of the Comptroller of the Currency & state-level regs
 - $\circ~$ OCC issued yearly reports, state-level aggr. of banking balance sheet items


DATA

- Digitize *state-level* OCC reports (1942-70)
- FOIA *bank-level* call reports (1960-83)^a
- Liabilities, assets, income, exp., reserves
- Construct, local lending rates

$$r_{jt}^{L} = rac{\text{Interest \& Fees on Loans}_{jt}}{\text{Total Loans}_{jt}}$$

- Correlate w. mortgage spreads ($\rho = 55\%$)
 - Digitized from National Archives phys. reports

a. Following Drechsler, Savov, and Schnabl, 2021, who also made available to us the data before our request was completed. Data after 1975 is public.

OCC SAMPLE TABLE

252

TABLE B-25.—Current operating revenue, and expenses, and dividends of national banks, by major categories and States, year ended Dec. 31, 1962 [Dollar amounts in thousands]

· · · · · · · · · · · · · · · · · · ·		Current operating revenue									
Location	Number of banks 1	Interest and dividends on securities		Interest and	Service charges and	Service charges on	Other service charges, commissions,	Trust de-	O ther current	Total current	
		U.S. Gov- ernment obligations	Gov-Other loans on bank account ent securities loans loans	deposit accounts	fees and collection and exchange charges	partment	operating revenue	operating revenue			
United States and possessions, total	4, 503	\$1,136,543	\$ 414, 878	\$4, 134, 522	\$ 74, 305	\$380, 402	\$108, 978	\$242, 204	\$104, 571	\$6, 596, 403	
Maine, New Hampshire. Vermont. Massachusetts Rhode Island. Connecticut.	51 29	2, 246 2, 489 1, 871 29, 642 3, 740 7, 216	734 659 453 6,748 2,050 3,954	13, 364 11, 851 7, 979 130, 897 18, 769 43, 380	180 117 117 2, 210 203 928	1, 199 1, 801 786 12, 241 1, 457 4, 952	238 302 91 9,017 636 997	1,008 436 156 10,525 1,356 5,805	166 168 92 4, 582 224 627	19, 135 17, 823 11, 545 205, 862 28, 435 67, 859	
New England States, total	222	47, 204	14, 598	226, 240	3, 755	22, 436	11, 281	19, 286	5, 859	350, 659	
New York. New Jersey. Penasylvania. Delaware. Maryland. District of Columbia.	4	100, 835 38, 940 82, 226 109 13, 381 9, 029	48, 217 21, 066 39, 630 23 3, 251 1, 048	405, 951 133, 951 272, 831 299 38, 859 23, 947	6, 100 1, 739 2, 974 0 1, 347 695	28, 513 14, 327 16, 238 13 3, 684 2, 632	9, 630 2, 434 4, 229 1 895 495	26, 873 6, 677 22, 572 0 1, 987 1, 816	35, 505 1, 975 5, 541 3 524 293	661, 624 221, 109 446, 241 448 63, 928 39, 955	
Eastern States, total	853	244, 520	113, 235	875, 838	12, 855	65, 407	17, 684	59, 925	43, 841	1, 433, 305	

 \odot

DATA SOURCES

1. Annual Report of the Comptroller of the Currency

- OCC: regulating entity for national banks
- Annual report on condition of banks
- Series by state of balance sheet items, 1863–1980
 - Originally from "Call Reports"
- We digitized 1942 to 1970

2. Call Reports

- Bank-level balance sheet variables
- FOIA request to the FRB for 1960 to 1975 (as in Drechsler, Savov, Schnabl, 2021)

 $(\bullet$

VARIABLES

OCC (1942–70). At the state level, for every year:

- Assets: loans, treasuries, securities, stocks, currency, balances w oth. bks
- Liabilities: deposits (demand vs. time/savings, by holder), borrowings, capital stock
- Loans: by type (C&I, financial, real estate, agricultural), reserves for losses
- Earnings: interest rates and charges on loans, ... on securities, fees on deposits
- Expenditure: operating exp., interest exp., losses on loans and los. on sec.

Call Reports (1960–75). Same as above, but at the bank level, with more detailed breakdowns.

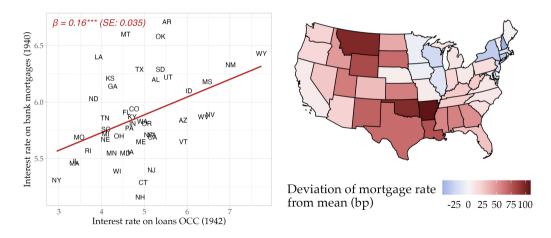
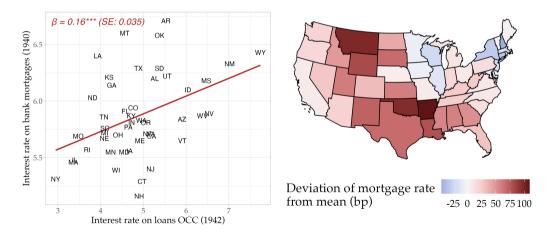

CORRELATES OF INITIAL SPREADS

Table: Correlates of Average State-Level Lending Rates in 1953–58 and Controls in Dynamic DiD Regressions

	Correlation Coeffic	cient with $r_{j,53-58}^L$
hare of farm pop. ₅₀ hare employed in mfg. ₅₀ hare pop. aged $65+_{50}$ hare of GDP from Oil ₅₀ Population density ₅₃ og(population) ₅₃	Unconditional	Multivariate
Bank Assets HHI ₆₁	0.16 (0.16)	0.03 (0.13)
Share of farm pop.50	0.31 (0.11)	-0.2 (0.2)
Share employed in mfg.50	-0.53 (0.12)	-0.02 (0.15)
Share pop. aged $65+_{50}$	-0.37 (0.15)	-0.19 (0.11)
Share of GDP from Oil ₅₀	0.4 (0.14)	0.14 (0.06)
Population density ₅₃	-0.5 (0.12)	-0.28 (0.17)
log(population) ₅₃	-0.64 (0.11)	-0.5 (0.12)
log(income p.c.) ₅₃	-0.37 (0.13)	-0.25 (0.19)

CORRELATION WITH MORTGAGE RATES


Our Rates vs. Housing Census Mortgage Rates (from Angelova and D'Amico 2024)

 $\overline{\bullet}$

CORRELATION WITH MORTGAGE RATES

Our Rates vs. Housing Census Mortgage Rates (from Angelova and D'Amico 2024)

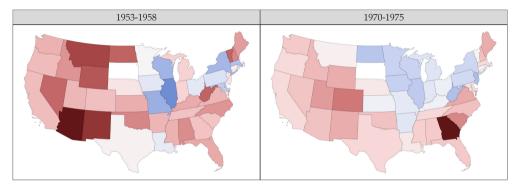
1962 Savings and Loans Data


10

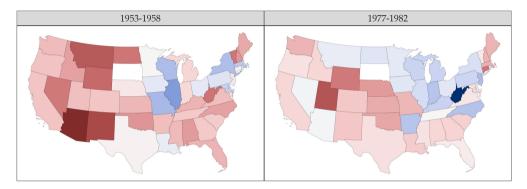
 $\overline{\mathbf{A}}$

MORTGAGE SPREADS, 1960-1970

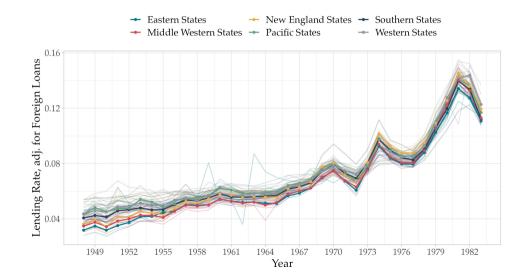
Federal Home Loan Bank Board Records


- Semiannual Financial Reports of Savings and Loan Institutions
- Operations and Conditions Books
 - Income, costs, assets, & liabilities
- For 1960-1972, physical copies hosted at National Archives
 - Aggregate at state and MSA level

Correlation with Mortgage Rates (in deviations from yearly means)

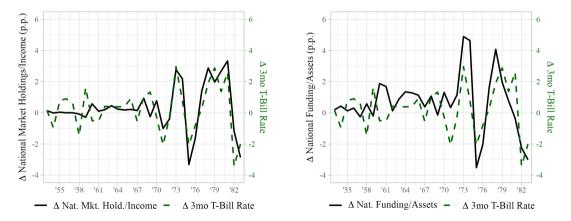

CONVERGENCE IN INTEREST RATES

Deviation of lending rate				
from mean (bps)	-50	0	50	100



CONVERGENCE IN INTEREST RATES

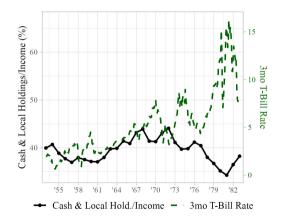
Deviation of lending rate-100-50050100


CONVERGENCE IN INTEREST RATES

TIME-VARYING RISE OF NATIONAL MARKETS

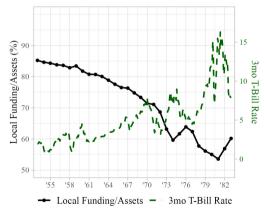
Households' Money Market Holdings

(MMF shares, large time dep., commercial paper)


Banks' National Liabilities

(large time dep., Fed Funds & Repos, comm. paper)

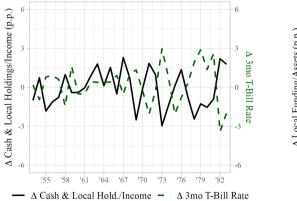
TIME-VARYING RISE OF NATIONAL MARKETS


Households' Local Holdings

(cash and checking acc., small time and savings dep.)

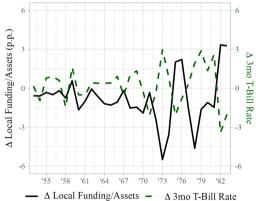
Banks' Local Liabilities

(checking accounts, small time and savings deposits)



 (\bullet)

TIME-VARYING RISE OF NATIONAL MARKETS


Households' Local Holdings

(cash and checking acc., small time and savings dep.)

Banks' Local Liabilities

(checking accounts, small time and savings deposits)

Initial Deposits, Initial Rates, and Deposits Outflows \odot

	Dependent Variable: State-Level									
	Initial	Lending R	ate (bp)	Change between '59 and '83 in Dem. Dep./Tot. Liab. (pp						
	(1)	(2)	(3)	(4)	(5)	(6)				
Initial Demand Deposit/Tot. Liab. (%)	453	-1.690	-2.331	823	799	829				
	(.673)	(.882)	(.690)	(.057)	(.069)	(.090)				
Fract. of Large Banks in State (%)		-1.206	713		.023	.010				
		(.431)	(.357)		(.020)	(.035)				
Region FEs			\checkmark			\checkmark				
E(Y)	538	538	538	-48	-48	-48				
SD(Y)	47.5	47.5	47.5	8.88	8.88	8.88				
Observations	46	46	46	46	46	46				
R ²	.008	.2	.71	.86	.86	.87				

ALL OUTCOMES, LEVELS

	Dependent variable:									
	Len	ding Rate	(pp)	Bank Fi	inancing F	Rate (pp)	Demand Dep. Share (%)			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
Initial Lending Rate (pp), $r_{i,53-58}^L$.999			.067			-1.142			
	(.063)			(.088)			(2.643)			
US 3mo T-Bill Rate (pp), r_t	1.320			.999			-5.194			
	(.013)			(.037)			(.463)			
$r_{i,53-58}^L \times r_t$	090	155	146	056	125	087	.235	.691	.934	
	(.011)	(.024)	(.034)	(.009)	(.021)	(.032)	(.117)	(.235)	(.337)	
Observations	1,150	1,150	1,150	1,150	1,150	1,150	1,150	1,150	1,150	
R ²	.89	.99	.99	.88	.98	.99	.57	.98	.99	
Within R ²	_	.27	.48	_	.25	.56	-	.14	.44	
State & Region × Year FEs		\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	
Financial Controls		\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	
Macro Controls			\checkmark			\checkmark			\checkmark	

Changes Deposits on RHS, Levels Deposits on RHS, Changes

ALL OUTCOMES, CHANGES

	Dependent variable:									
	Len	ding Rate	(pp)	Bank Fi	nancing F	Rate (pp)	Demand Dep. Share (%)			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
Initial Lending Rate (pp), $r_{i,53-58}^L$.010			.039			.076			
,,	(.018)			(.029)			(.092)			
Δ US 3mo T-Bill Rate (pp), Δr_t	1.101			1.195			745			
	(.152)			(.332)			(.178)			
$r_{j,53-58}^L \times \Delta r_t$	130	177	149	153	217	069	.118	.076	052	
	(.027)	(.050)	(.050)	(.057)	(.061)	(.068)	(.052)	(.128)	(.184)	
Observations	1,150	1,150	1,150	1,150	1,150	1,150	1,150	1,150	1,150	
R ²	.62	.92	.94	.54	.86	.91	.017	.64	.75	
Within R ²	_	.15	.41	_	.17	.5	_	.043	.33	
State & Region × Year FEs		\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	
Financial Controls		\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	
Macro Controls			\checkmark			\checkmark			\checkmark	

ALL OUTCOMES, LEVELS

	Dependent variable:									
	Lenc	ling Rate	(bp)	Bank Fir	nancing R	ate (bp)	Demand Dep. Share (%)			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
Initial Dem. Dep. Share (%) _{53–58}	817			490			1.029			
-	(.448)			(.372)			(.054)			
US 3mo T-Bill Rate (pp), r _t	68.067			64.030			.928			
	(9.738)			(7.772)			(.691)			
Initial Dem. Dep. Share $\times r_t$.245	.605	.452	.099	.415	.251	067	065	063	
	(.171)	(.128)	(.175)	(.097)	(.135)	(.110)	(.011)	(.011)	(.016)	
Observations	1,150	1,150	1,150	1,150	1,150	1,150	1,150	1,150	1,150	
R ²	.88	.99	.99	.88	.98	.99	.7	.98	.99	
Within R ²	_	.18	.44	-	.2	.55	_	.31	.54	
State & Region × Year FEs		\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	
Financial Controls		\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	
Macro Controls			\checkmark			\checkmark			\checkmark	

All Outcomes, in Changes

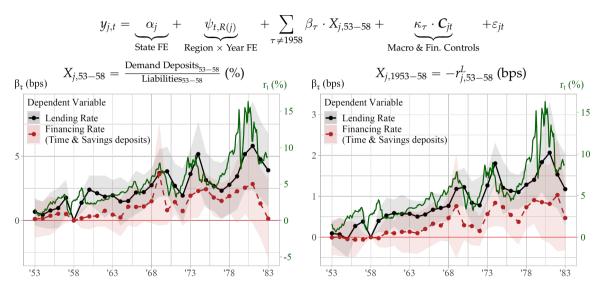
		Dependent variable:										
	Lending Rate (bp) Bai				Bank Financing Rate (bp)			Demand Dep. Share (%)				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)			
Initial Dem. Dep. Share (%) _{53–58}	.073			018			035					
-	(.148)			(.138)			(.003)					
Δ US 3mo T-Bill Rate (pp), Δr_t	33.364			37.277			413					
	(.008)			(8.657)			(.00004)					
Initial Dem. Dep. Share $\times \Delta r_t$.136	.709	.557	.055	.713	.455	.004	004	003			
	(.129)	(.167)	(.297)	(.052)	(.307)	(.290)	(.003)	(.007)	(.010)			
Observations	1,150	1,150	1,150	1,150	1,150	1,150	1,150	1,150	1,150			
R ²	.61	.92	.94	.52	.85	.91	.042	.64	.75			
Within R ²	-	.12	.41	_	.13	.5	—	.043	.33			
State & Region × Year FEs		\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark			
Financial Controls		\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark			
Macro Controls			\checkmark			\checkmark			\checkmark			

$\mathbf{ }$

				Dependen	t variable:					
	State-level Lending Rate (pp), $r_{j,t}^L$									
		In L	evels)/-	anges			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
US 3mo T-Bill Rate (pp), r _t	1.320									
	(.003)									
$r_{i,53-58}^L \times r_t (\beta)$	090	099	155	146						
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(.011)	(.021)	(.024)	(.034)						
Δ US 3mo T-Bill rate (pp), Δr_t					1.101					
					(.144)					
$r_{j,53-58}^L imes \Delta r_t \left(\beta^\Delta \right)$					130	138	177	149		
,,					(.027)	(.045)	(.050)	(.050)		
Observations	1,150	1,150	1,150	1,150	1,150	1,150	1,150	1,150		
R ²	.89	.99	.99	.99	.62	.9	.92	.94		
Within R ²	_	.19	.27	.48	_	.15	.15	.41		
State FEs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Year FEs		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		
Financial Controls		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		
Region \times Year FEs			\checkmark	\checkmark			\checkmark	\checkmark		
Macro Controls				\checkmark				\checkmark		

(Financing Rates on LHS) (Initial Deposits on RHS) (Financing Rates on LHS, Initial Deposits on RHS)

				Dependen	t variable:							
		State-level Bank Financing Rate (pp)										
		In L	evels		0	In Ch	anges					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)				
US 3mo T-Bill Rate (pp), r _t	.999											
	(.035)											
$r_{i,53-58}^L \times r_t \left(\beta\right)$	056	069	125	087								
100-00	(.007)	(.015)	(.021)	(.032)								
Δ US 3mo T-Bill rate (pp), Δr_t					1.195							
					(.333)							
$r_{i,53-58}^L \times \Delta r_t \left(\beta^\Delta \right)$					153	171	217	069				
,,					(.057)	(.076)	(.061)	(.068)				
Observations	1,150	1,150	1,150	1,150	1,150	1,150	1,150	1,150				
R ²	.9	.98	.98	.99	.54	.79	.86	.91				
Within R ²	_	.17	.25	.56	_	.12	.17	.5				
State FEs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
Year FEs		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark				
Financial Controls		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark				
Region × Year FEs			\checkmark	\checkmark			\checkmark	\checkmark				
Macro Controls				\checkmark				\checkmark				


	Dependent variable:									
		State-level Lending Rate (pp), $r_{i,t}^L$								
		In Levels In Changes								
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
US 3mo T-Bill Rate (pp), r_t	.681									
	(.031)									
Initial Dem. Dep. Share (%) ₅₃₋₅₈ × r_t (β)	.245	.395	.605	.452						
	(.028)	(.111)	(.128)	(.121)						
Δ US 3mo T-Bill rate (pp), Δr_t					.334					
					(.038)					
Initial Dem. Dep. Share (%) ₅₃₋₅₈ × Δr_t (β^{Δ})					.136	.230	.709	.557		
					(.042)	(.166)	(.167)	(.183)		
Observations	1,150	1,150	1,150	1,150	1,150	1,150	1,150	1,150		
R ²	.89	.99	.99	.99	.61	.89	.92	.94		
Within R ²	-	.11	.18	.44	_	.055	.12	.41		
State FEs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Year FEs		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		
Financial Controls		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		
Region \times Year FEs			\checkmark	\checkmark			\checkmark	\checkmark		
Macro Controls				\checkmark				\checkmark		

\odot

				Dependen	t variable:				
	State-level Bank Financing Rate (pp)								
		In Levels In Changes							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
US 3mo T-Bill Rate (pp), r_t	.640								
	(.090)								
Initial Dem. Dep. Share (%) ₅₃₋₅₈ × r_t (β)	.099	.214	.415	.251					
	(.100)	(.135)	(.135)	(.091)					
Δ US 3mo T-Bill rate (pp), Δr_t					.373				
					(.087)				
Initial Dem. Dep. Share (%) _{53–58} × Δr_t (β^{Δ})					.055	.332	.713	.455	
					(.052)	(.180)	(.305)	(.223)	
Observations	1,150	1,150	1,150	1,150	1,150	1,150	1,150	1,150	
R ²	.9	.97	.98	.99	.52	.78	.85	.91	
Within R ²	_	.14	.2	.55	_	.053	.13	.5	
State FEs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Year FEs		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
Financial Controls		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
Region × Year FEs			\checkmark	\checkmark			\checkmark	\checkmark	
Macro Controls				\checkmark				\checkmark	

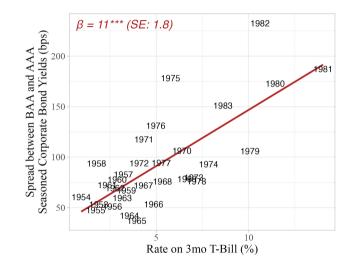
\odot

WITHIN REGION RESULTS

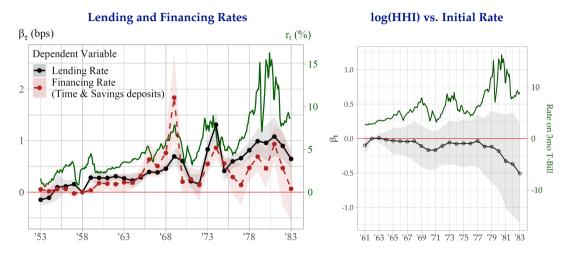
 $\overline{\bullet}$

SPREADS AND GDP GROWTH (PLACEBO)

				Dependen	t variable:							
		State-level Bank Lending Rate (pp)										
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)				
US GDP Growth Rate (pp), g_t	.402				.046							
	(.010)				(.003)							
$r_{i,53-58}^{L} \times g_{t}$	027	025	037	047	003	004	.005	014				
· · · · ·	(.041)	(.019)	(.032)	(.036)	(.014)	(.011)	(.012)	(.018)				
US 3mo T-Bill Rate (pp), rt					1.308							
					(.005)							
$r_{i,53-58}^L \times r_t$					089	099	156	142				
					(.014)	(.021)	(.024)	(.034)				
Observations	1,150	1,150	1,150	1,150	1,150	1,150	1,150	1,150				
R ²	.089	.99	.99	.99	.89	.99	.99	.99				
Within R ²	.077	.041	.047	.39	_	.19	.27	.49				
State FEs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
Year FEs & Financial Conts.		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark				
Region \times Year FEs			\checkmark	\checkmark			\checkmark	\checkmark				
Macro Controls				\checkmark				\checkmark				



SPREADS AND REAL RATES (PLACEBO)


				Depender	ıt variable.					
	State-level Bank Lending Rate (pp)									
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
US Short Real Rate (pp), ρ_t^s	010				125					
	(.018)				(.029)					
$r_{i,53-58}^{L} \times \rho_{t}^{s}$.036	.042	.028	.035	.044	.054	.039	.043		
	(.067)	(.038)	(.062)	(.063)	(.014)	(.013)	(.026)	(.027)		
US 3mo T-Bill Rate (pp), r _t					1.327					
					(.051)					
$r_{i,53-58}^L \times r_l$					092	104	156	147		
,,					(.010)	(.020)	(.025)	(.034)		
Observations	1,150	1,150	1,150	1,150	1,150	1,150	1,150	1,150		
R ²	.038	.99	.99	.99	.9	.99	.99	.99		
Within R ²	.026	.052	.04	.38	_	.22	.28	.49		
State FEs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Year FEs & Financial Conts.		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		
Region \times Year FEs			\checkmark	\checkmark			\checkmark	\checkmark		
Macro Controls				\checkmark				\checkmark		

RISK PREMIA

BACK TO INTRO BACK TO RED. FORM

Market Power Unlikely to Explain β_t

 $(\mathbf{\cdot})$

TRIPLE-DIFFERENCE (CHANGES)

	Dependent variable:									
	Bank-l	evel Lendir	ng Rate	Bank-le	Bank-level Financing R					
	(1)	(2)	(3)	(4)	(5)	(6)				
β on initial state lending rate $ imes \Delta r_t$:										
– Small banks, β_s	134	134	041	037	031	.027				
	(.069)	(.060)	(.049)	(.035)	(.031)	(.037)				
– Large banks, β_ℓ	368	368	174	218	211	044				
	(.077)	(.076)	(.061)	(.100)	(.096)	(.152)				
– Triple-diff, $\beta_\ell - \beta_s$	235	234	133	181	180	071				
	(.070)	(.069)	(.082)	(.129)	(.110)	(.167)				
Observations, small banks	238,395	238,395	238,395	236,484	236,484	236,484				
Observations, large banks	12,851	12,851	12,851	12,851	12,851	12,851				
Within R ² , small banks	.019	.022	.055	.011	.015	.032				
Within R ² , large banks	.41	.41	.46	.12	.13	.19				
Bank & Region × Year FEs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
Ratio Domestic Loans Cont.	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
Loan Comp. Controls		\checkmark	\checkmark		\checkmark	\checkmark				
Macro Controls			\checkmark			\checkmark				

(In Levels)

TRIPLE-DIFFERENCE (LEVELS)

		Dependent variable:								
	Bank-l	evel Lendir	ng Rate	Bank-le	ng Rate					
	(1)	(2)	(3)	(4)	(5)	(6)				
β on initial state lending rate \times r_t :										
– Small banks, β_s	100	103	056	027	026	008				
	(.047)	(.059)	(.028)	(.026)	(.030)	(.035)				
– Large banks, β_ℓ	197	202	110	147	147	069				
	(.079)	(.097)	(.038)	(.073)	(.093)	(.065)				
– Triple-diff, $\beta_{\ell} - \beta_s$	097	098	054	120	121	062				
	(.063)	(.058)	(.042)	(.069)	(.076)	(.084)				
Observations, small banks	249,668	249,668	249,668	247,749	247,749	247,749				
Observations, large banks	13,450	13,450	13,450	13,450	13,450	13,450				
Within R ² , small banks	.026	.035	.081	.0091	.015	.046				
Within R ² , large banks	.46	.47	.51	.13	.15	.22				
Bank & Region × Year FEs	~	~	~	~	~	~				
Ratio Domestic Loans Cont.	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
Loan Comp. Controls		\checkmark	\checkmark		\checkmark	\checkmark				
Macro Controls			\checkmark			\checkmark				

In Changes

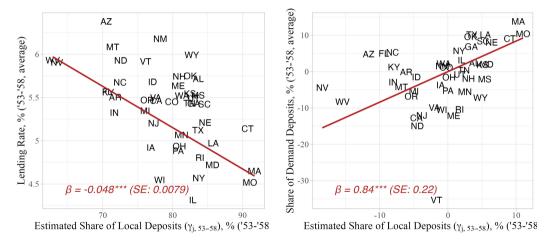
		D	ependent va	riable: Gro	Dependent variable: Growth Between 1963 and 1983 in									
		GDP			Populatio	n	GDP per capita							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)					
Initial Lending Rate (pp), $r_{i,53-58}^L$.284	.191	.139	.190	.149	.118	.094	.042	.021					
,,	(.051)	(.058)	(.069)	(.041)	(.039)	(.042)	(.031)	(.033)	(.044)					
Right-to-Work State		.190	.109		.012	.023		.178	.086					
		(.044)	(.061)		(.033)	(.056)		(.020)	(.028)					
% GDP from Oil ₅₀		798	-1.155		657	500		141	654					
		(.812)	(1.064)		(.433)	(.599)		(.451)	(.560)					
January Temperature		.005	.004		.006	.005		001	001					
		(.003)	(.004)		(.002)	(.003)		(.001)	(.003)					
Bartik Demand Shock ₆₃₋₈₃		.237	.253		.075	.112		.163	.141					
		(.079)	(.105)		(.048)	(.063)		(.042)	(.057)					
Bartik Agricultural Shock ₆₃₋₈₃		.068	.246		748	.005		.815	.241					
		(.571)	(.893)		(.362)	(.665)		(.301)	(.481)					
Region FEs			\checkmark			\checkmark			\checkmark					
Observations	46	46	46	46	46	46	46	46	46					
R ²	.29	.771	.815	.321	.666	.724	.115	.75	.826					

2nd Order Perturbation

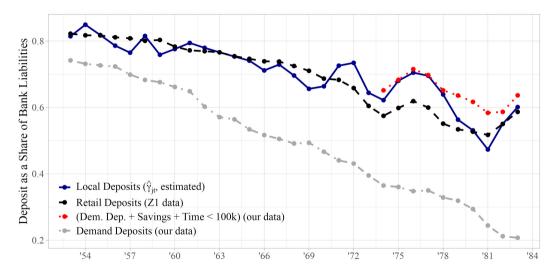
$$s_{jt}^{L} = r_{jt}^{L} - r_{t} = \underbrace{\theta_{t}/2}_{\text{Friction}} \times \left(1 - \left(\underbrace{\bar{\gamma}_{j} \exp(-\phi r_{t})}_{\text{Local Funding}}\right)^{2}\right)$$
(1)
$$\log s_{jt}^{L} \approx v_{0} + \underbrace{v_{j}}_{\text{State FE}} + \underbrace{v_{t}}_{\text{Year FE}} + \underbrace{\eta(\phi) \cdot \log \bar{\gamma}_{j} \cdot r_{t}}_{\text{Regionally het. passthrough of } r_{t}} + v_{jt}$$
(2)
w. frictions: $\log \theta_{t} = \log \overline{\theta} \underbrace{-b_{\theta} \cdot t}_{\text{Linear Trend}} + \widetilde{\theta}_{t}$ (3)

J + 2 parameters: $\{\bar{\boldsymbol{\gamma}}_j\}_1^J, \boldsymbol{\phi}, \boldsymbol{b}_{\theta}$

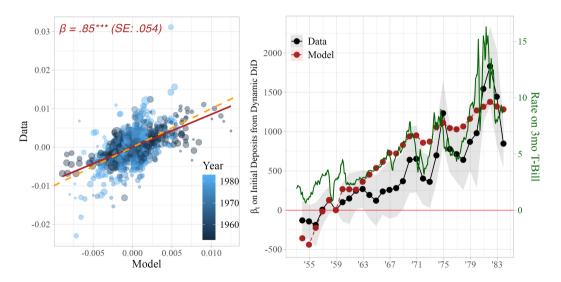
J – 1 Can run (2) in the data w. state-specific slopes, J – 1 coefficients inform {η_j}^J₁, φ
J Recover omitted state by matching aggr. share of retail dep. equal to data in 1958
J + 1 Match correlation over time of share of retail dep. in model and data
J + 2 Recover b_θ from unexplained part in year FE


`**∙**

UNTARGETED MOMENTS

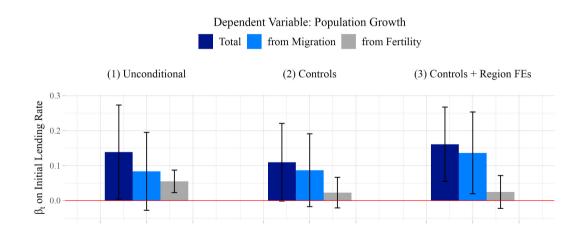

 \odot

(b) Initial Demand Deposit Share



TARGETED TIME SERIES OF RETAIL DEPOSITS

 $\overline{\mathbf{1}}$


TARGETED CHANGES IN SPREADS

 \odot

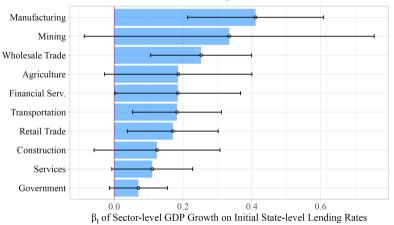
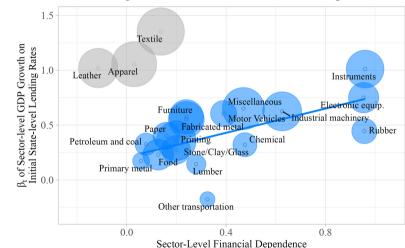

POPULATION GROWTH IS ALL DRIVEN BY MIGRATION

Figure: Population Growth and Fin. Convergence: Migration vs. Fertility

 \frown

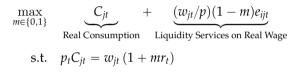
HIGHER GROWTH IN MANUFACTURING



Sector-level GDP Growth Against Initial Rates

 \frown

HIGHER GROWTH IN FINANCE-CONSTRAINED MFG. SECTORS O


Sector-level GDP Growth Against Initial Rates and Financial Dependence, w/in Mfg.

HOUSEHOLDS' LIQUIDITY AND DEPOSIT SUPPLY

Households earn wage w_{it} in t^- and consume in t^+ , can store liquidity in:

• Bonds pay rate of r_t , deposits, pay no rate but give liquidity premium $e_{ijt} \sim F_j$

• Consumer *i* in *j* at time *t* holds start of period income w_{jt} in deposits iff $e_{ijt} \ge r_t$

Local Deposit Supply, fraction of local labor income

$$D_{jt} = \int \mathbf{1} \left(e \ge r_t \right) \times w_{jt} \, dF_j(e) = \underbrace{\overline{\varphi_j}}_{\text{Local Liquidity}} \times \underbrace{\varphi\left(r_t\right)}_{\text{Sensitivity to } r_t} \times \underbrace{w_{jt}N_{jt}}_{\text{Labor Income}}$$

• If $e_{ijt} = \chi_j + \varepsilon_i$, $\varepsilon_i \sim \text{Exp}(\phi)$, then $\bar{\varphi}_j = \exp(\phi\chi_j)$ and $\varphi(r_t) = \exp(-\phi r_t)$

 (\bullet)

Firms

$$\max_{N,K} \qquad p_t z_{jt} N^{\alpha_N} K^{\alpha_K} - R_{jt}^F \left(w_{jt} N + r_{jt}^K K \right)$$

Homogeneous good sold on national mkt at price p_t . Financing prod. at cost R_{jt}^F , two sources:

- Fraction $1 \xi_i$ using internal capital or bond market, at cost r_t
- Fraction ξ_j using bank loans, at cost r_{jt}^L

$$R_{jt}^F = 1 + r_t + \xi_j \left(r_{jt}^L - r_t \right)$$

Loan Demand, fraction of input costs

$$L_{jt}^{D} = \boldsymbol{\xi}_{j} \times \left(\boldsymbol{w}_{jt} N_{jt} + \boldsymbol{r}_{jt}^{K} K_{jt} \right)$$

FIRMS, REAL FORMULATION

Firms solve:

$$\max_{N,K} \left(1 + \pi_t\right) F(N,K) + \left(1 + r_t + \xi_j s_{jt}\left(r_t\right)\right) \left(w_{jt}N + r_{jt}^K K\right)$$

where $s_{jt} = r_{jt}^L - r_t$. Equivalent to solving:

$$\max_{N,K} F(N,K) + \frac{1 + r_t + \xi_j s_{jt}(r_t)}{1 + \pi_t} \left(w_{jt} N + r_{jt}^K K \right)$$

Letting $r_t = \rho^s + \pi_t$ and approximating for a small π_t , yields:

$$\frac{1+r_t+\xi_{jt}s_{jt}\left(r_t\right)}{1+\pi_t} \cong 1+\rho^s+\frac{\xi_j}{s_{jt}}s_{jt}\left(r_t\right)$$

Proposition. (Neutrality) If $s_{jt} = 0 \forall j$, an increase in the nominal rate has no effects.

`**∙**

HOUSEHOLDS' FLOW UTILITY

Static:
$$\max_{m \in \{0,1\}} C_{jt} + \frac{w_{jt}}{1 + \pi_t} (1 - m) e_{ijt} + B_{jt}$$
 s.t. $(1 + \pi_t) C_{jt} + h_{jt} = w_{jt} (1 + mr_t)$
Flow utility:

$$u_{jt}(\varepsilon) = w_{jt} \frac{1 + \max\left\{r_t, \chi_j + \varepsilon\right\}}{1 + \pi_t} - h_{jt} + B_{jt} \approx w_{jt} \left(1 + \rho^s + \max\left\{0, \chi_j + \varepsilon - r_t\right\}\right) - h_{jt} + B_{jt}$$

Expected flow utility:

$$U_{jt} = \mathbb{E}\left[u_{jt}^{N}\left(\varepsilon\right)\right] = \int_{-\infty}^{\infty} u_{jt}^{N}\left(\varepsilon\right) f(\varepsilon) d\varepsilon = B_{jt} - h_{jt} + w_{jt}\left(1 + \mathcal{R}_{jt}\right)$$

with $\mathcal{R}_{jt} = \rho^s + \frac{1}{\phi} \exp\left(-\phi(r_t - \chi_j)\right)$. If distribution of χ_j uncertain, substitute $\mathcal{R}_{jt} = \mathbb{E}_j \left[\mathcal{R}_{jt}\right]$, with priors equal to empirical distribution of χ_j (~ Normal)

 $(\bullet$

VALUE FUNCTION

For small
$$\Delta$$
:
 $v_{jt}(\varepsilon, \overrightarrow{\epsilon_t}) = \Delta u_{jt}^N(\varepsilon) + \rho(\Delta) \left((1 - \mu(\Delta)) \underbrace{\max_{\{m\}} \left[\beta \mathbb{E}_t v_{mt+\Delta}(e_{mt+1}, \overrightarrow{\epsilon}) - \tau_{jm} + \frac{\epsilon_{mt}}{\nu} \right]}_{\text{Cnt. Value from Staying}} \right)$
Taking expectations $V_{jt} = \mathbb{E} \left[v_{jt}(\varepsilon_{ijt}, \overrightarrow{\epsilon}_t) \right]$ and $U_{jt} = \mathbb{E} \left[u_{jt}^N(\varepsilon) \right]$:
 $\rho V_{jt+\Delta} - \frac{V_{jt+\Delta} - V_{jt}}{\Delta} = U_{jt} + (1 - \rho\Delta) \left[\mu \left(\mathbb{E} \overrightarrow{\epsilon} \max_k \{ e^{-\rho\Delta} V_{kt+\Delta} - \tau_{jk} + \epsilon_{kt} \} - V_{jt+\Delta} \right) \right]$

Follow Caliendo et al. (2019):

$$\mathcal{M} = \mathbb{E} \max_{k} \{ e^{-
ho\Delta} V_{kt+\Delta} - au_{jk} + \epsilon_{kt} \} = rac{1}{
u} \log \sum_{k} \exp\left(
u \left(eta V_{kt+\Delta} - au_{ik}
ight)
ight)$$

LAW OF MOTIONS

$$\frac{dN_{jt}}{dt} = \mu \left(\sum_{i=1}^{N} m_{ijt}(V_t) N_{it} - N_{jt} \right); \quad \text{where} \quad m_{ij}(V_t) = \frac{\exp \nu \left(V_{jt} - \tau_{ij} \right)}{\sum_{m=1}^{J} \exp \nu \left(V_{mt} - \tau_{im} \right)}$$

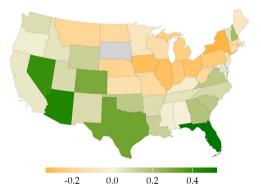
Capital: guess-and-verify as in Moll (2014), $c_{jt}^{K} = \rho K_{jt}$, which pins down the KFE for capital as:

$$\frac{dK_{jt}}{dt} = \left(R_{jt}^{K} - \delta - \rho\right)K_{jt}$$

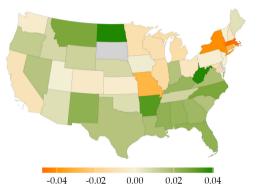
The value function of the capitalist is $\Pi_{jt} = (A_{jt} + \log K_{jt})/\rho$, with A_{jt} satisfying the Bellman equation:

$$\rho A_{jt} - \frac{dA_{jt}}{dt} = \rho \log \rho + R_{jt}^K - \delta - \rho$$

AGGREGATE EFFECTS


	Horizon (t)											
	1983	1993	2003	2013	2023	2083	$t \to \infty$					
Changes relative to 1958												
US GDP	66%	15%	.48%	.97%	1.33%	2.07%	2.23%					
US Physical Capital Stock	75%	.07%	1.24%	2.20%	2.87%	4.12%	4.33%					
Path of shocks												
Nominal Rates, $r_t - r_{1958}$	6.84	2.52	.93	.34	.13	.00	.00					
Frictions, θ_t/θ_{1958}	.34	.34	.34	.34	.34	.34	.34					

 $\overline{}$


GROWTH: MODEL VS. DATA

 \odot

Data, demeaned

From Financial Integration

GROWTH: MODEL VS. DATA

0.5

0.4

0.3

0.2

0

-0.1

-0.2

-0.3

MO

NY

Data 0.1

GDP Growth between 1963 and 1983

CA VTTN ID

NE.

n

Model

IA

wi

IL POH

MN

MA

RI

COWY AZ

ок _{NH_{GA}}

β **∓**L3.963

NV

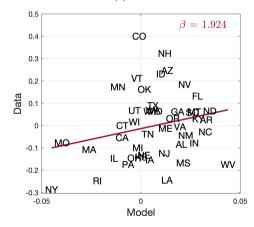
SC

MATY

IN

NHO

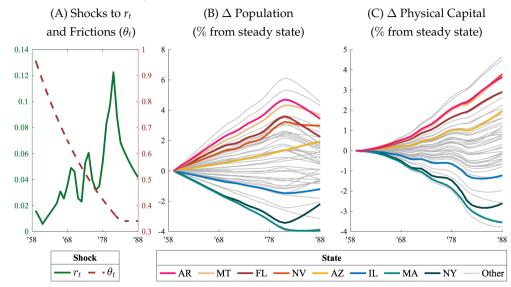
WV


0.05

'nм

OFMS

ME


NJ

(B) Controls

 \odot

UNCERTAINTY ON χ_j

