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Abstract 

 

This research examines the economic impact of climate change adaptation measures on the 

housing markets of two representative coastal cities in the United States located along the 

Atlantic Ocean. The results shed light on how adaptation measures and investments influence 

housing values and local economies with respect to their place-based and local forms of 

implementation. Numerous quantitative approaches, including multiple sets of geospatial 

modeling and panel-data hedonic regression analyses, are used to examine changes in property 

values associated with climate adaptation measures and the dynamics of risk perception. The 

results also signal how risk perception and hurricane characteristics are reflected in housing 

markets, thereby shedding light on the effects of anticipatory and reactive adaptation strategies in 

the reclassified categories of hard infrastructure, green infrastructure, adaptive capacity, and 

private adaptation on property values in these coastal communities. Collectively, the study 

suggests which adaptation strategies, characteristics, and attributes can contribute to maximizing 

both community resilience and economic benefits against the weather extremes caused by 

climate change. 
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Research Highlights 

 

• The study confirms that the hurricane characteristics and associated risk perception factors 

impact local housing market dynamics. 

• Effective adaptation measures yield a rapid housing price appreciation within 5 months after 

hurricane strikes. Conversely, when adaptation measures are malfunctioning, housing sales 

prices depreciate faster during the first few months of hurricane occurrence. 

• This study highlights that natural green infrastructure as a climate adaptation measure is 

associated with a housing price appreciation of 9.7% in Miami-Dade County and 2.7% in 

New York City.  

• Structural elevation achieved by raising foundations provides 6.6% and 14.3% in housing 

price increases in Miami-Dade County and New York City, respectively.  

• Adaptation measures for storm surges provides the largest positive impact on housing prices 

at 15.8% in Miami-Dade County. 

• The study further suggests that implementation of climate adaptation should be based on 

local-specific information, rather than relying upon national or state-level data, due to local 

idiosyncrasies, location-specific storm characteristics, and the subjective nature of risk 

perception.  

• The study provides a clearer understanding of how different types of climate adaptation 

measures interacting with storm characteristics and risk perception are contributing to 

reinforcing a coastal community resiliency. 
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1. Introduction 

As climate change accelerates, extreme meteorological events such as coastal floods and storm 

surges have been occurring both more frequently, and with greater intensity (Rosenzweig et al., 

2011). According to the National Oceanic and Atmospheric Administration (NOAA), in 2017 

alone, Hurricane Harvey caused total damages in the amount of $125 billion in the United States. 

In that same year, Hurricane Irma destroyed 25% of buildings in the Florida Keys. Moreover, the 

frequency of billion-dollar disaster events in the past five years has doubled from the average 

frequency between 1980 and 2016 (Smith, 2018).  

Despite increases in disruptive climatic risks, coastal population density has grown, being fueled 

by the positive effects of coastal amenities (Bin et al., 2008) and flood insurances (Atreya & 

Czajkowski, 2014), and is now nearly three times that of the hinterlands over the past half-

century (Barbier, 2014). This paradoxical phenomenon—the spatial coexistence of urban growth 

and risk increase—has led to an exponential increase of vulnerability to climate risk, demanding 

my attention with respect to climate adaptation. 

To alleviate problems caused by this inconvenient coexistence, many coastal cities have been 

allocating a considerable amount of their budgets toward climate change adaptation projects, 

including planned retreat, nearshore armoring, and ways of enhancing adaptive capacity. Among 

the strategies that have been widely discussed over the last half century, though, retreat and 

relocation options have been seen as highly unfavorable on the basis of the financial burden, 

legal conflicts, and numerous other socio-cultural issues these strategies require (Hino, Field, & 

Mach, 2017). By contrast, on-site adaptation measures have been gaining more popularity, since 

these allow homeowners to keep coastal amenities whilst curbing potential asset value 

degradation due to climate change (Bunten & Kahn, 2017; Jin et al., 2015; Mills-Knapp et al., 

2011). 

However, the existing literature has paid insufficient attention to measuring the economic effects 

of these on-site climate adaptation measures. This is primarily due to factors such as the 

unpredictability of the risks in time and space; locally different disaster preparedness capacities; 

and the subjective nature of climate risk perception (Boulton, 2016). Furthermore, the reactive 

nature of adaptation projects—climate adaptation decision-making is mostly based on past 

climate events—prevents evaluating already implemented adaptation projects until the next 

climate event (Mendelsohn, 2000). 

Such complexity aside, identifying the economic effects of adaptation measures on real estate 

markets is necessary, due to the significant share of the housing market in the urban economies, 

as well as the view of pragmatic economic dimensions concerning existing urban infrastructures. 

Therefore, I analyzed the effects of climate adaptation measures on housing prices in Miami-

Dade County (MDC) and New York City (NYC), where various adaptation projects have taken 

place due to frequent hurricane damage. This study will contribute to improving the effectiveness 

of future adaptation policies and urban resilience strategies in coastal areas. 
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2. Literature Review 

A number of studies identify the effects of coastal amenities on housing markets. The majority of 

the literature suggests that property values are positively related by proximity to the coast 

because of the amenity effects (such as ocean views and accessibility to beaches) and are 

particularly strong within 500 feet of the coastline (Conroy & Milosch, 2011). Pompe (1999) 

found that ocean views add approximately 45% to housing values on Seabrook Island in South 

Carolina. Similarly, Benson et al. (1998) confirmed that ocean view quality differentiates a sales 

price premium. Landry and Hindsley (2011) found that the influence of beach quality on local 

property values is significantly positive within 1,000 feet.  

In contrast to the positive impacts of these coastal amenities, risks associated with major storms 

typically have adverse impacts on housing prices. Bin and Polasky (2004) indicated that flood 

risk decreases market values, and the effect is substantially larger post-storm occurrences than 

prior. Higher flood risk probability is associated with housing price decreases (Bin, Kruse, & 

Landry, 2008; Daniel, Florax, & Rietveld, 2009). Hallstrom and Smith (2005) confirmed that 

risk information without any physical harms decreases housing prices by 19%, which is similar 

to the effect in areas that have significant storm damages. This is not only because physical 

damages occurred, but also because of the perceived risk’s negative effect on property value 

(Troy & Romm, 2004). Similarly, Kousky (2010) indicated that damaged infrastructure or the 

stigmatizing of an area as “risk-prone” after a disaster can also influence property values outside 

of a floodplain. 

These adverse impacts of risk probability and information are influenced by human cognitive 

perspectives. Otto, Mehta, and Liu (2018) suggested that a newer risk experience affects 

individuals’ response to future risks by modifying their true risk perception. Meyer et al. (2014) 

found that perceived risk between before and after a hurricane strikes can be altered by 

“hindsight.” This cognitive tendency leads homeowners to underestimate the actual threats of 

hurricanes, resulting in a failure of adequate storm preparation. Pryce, Chen, and Galster (2011) 

indicated that risks can be influenced by discounting risk cognition of anticipated future events 

(myopic tendency about unrealized risk) while forgetting past events over time.  

With respect to storm idiosyncrasies, individual characteristics of hurricane itself can play a 

significant role in housing market dynamics. Ewing, Kruse, and Wang (2007) discovered that 

windstorms adversely influence housing prices by 1.5 to 2% promptly after the storm events. On 

the contrary, Meyer et al. (2014) found that wind speed of hurricanes is overestimated while the 

flooding is underestimated because the current hurricane warning system (i.e., the Saffir-

Simpson Hurricane Scale) largely relies on wind power.  

Regardless of the individual storm characteristics, a major storm occurrence can directly affect 

local market dynamics. Murphy and Strobl (2009) indicated that major storms have a positive 

influence on housing values temporarily because of the shortfall of available housing supply 

immediately after a hurricane occurrence. Conversely, Beracha and Prati (2008) argued that both 
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home sales volumes and prices decline within several months post hurricane and rebound to the 

prices before the event. Although a large body of literature suggests that the adverse effect of 

hurricanes on housing prices is generally transitory (Below, Beracha, & Skiba, 2017; Chivers & 

Flores, 2002; Ortega & Taspinar, 2017), this negative impacts can be prolonged for years 

depending on local market economies (Atreya, Ferreira, & Kriesel, 2013; Bin & Landry, 2013). 

Relatively few studies have been developed identifying the economic effects associated with on-

site adaptation measures. Fell and Kousky (2015) found that levee-protected commercial 

properties sell for approximately 8% more than similar properties in 100-year floodplains 

without such protection. Jin et al. (2015) indicated that single-family homes located behind a 

seawall within 160 feet of waterbodies have a 10% price appreciation due to anticipated risk 

reduction against inundation. 

Quantitative study of valuing green infrastructure and private adaptive measures on housing 

prices is mostly limited. Watson et al. (2016) roughly suggested that wetlands reduce flood 

damage by 54-78%. Green et al. (2016) argued that green infrastructure supports enhancing 

insurance value by reducing vulnerability and the costs of hard infrastructural adaptation to 

climate change. Natural green infrastructure can be more cost-effective than engineering 

approaches from a long-term perspective, since they generally have self-maintaining capacities 

and can host other ecosystem services (Bobbins & Culwick, 2016; Costanza et al., 2008). In 

terms of private adaptive measures, McKenzie and Levendis (2010) found that elevation has a 

positive relationship with sales prices, particularly in low-lying areas, and this elevation premium 

is pronounced after a high-powered storm. Fortifying building structures by implementing 

stricter building codes and reinforcing homes against major hurricanes yields a price premium 

(Dumm, Sirmans, & Smersh, 2012). 

Although coastal communities can reduce their risk exposure by investment in buildings and 

infrastructural resilience, it would be difficult to achieve long-term adaptive effects to climate 

change only with these approaches. Since limited budgets and resources prioritize certain climate 

adaptation projects in certain areas, poorer communities may be further marginalized by the risk 

exposure (de Coninck et al., 2018). Thus, “addressing the social structural causes of vulnerability 

is essential” by enhancing adaptive capacity, which is “often associated with access to 

technology, high education levels, economic equity, and strong institutions” (O'Brien & Selboe, 

2015). To maximize climate adaptation efforts, then, cities and local governments would need to 

include both the infrastructural adaptation and adaptive capacity. 
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3. Data 

The study investigates the impacts of climate adaptation measures using single-family housing 

transaction data in MDC and NYC from July 1, 2009 to May 31, 2018. The study combines four 

large datasets from MDC, NYC, the Federal Emergency Management Agency (FEMA), and the 

National Oceanic and Atmospheric Administration (NOAA); datasets include: property 

transaction data, neighborhood and amenity characteristics, and historical hurricane tracks and 

storm reports. Local market statistics such as unemployment rates, housing vacancy rates, and 

median household incomes are provided by the U.S. Census Bureau. 

 

  

Figure 1.  Site map with hurricane track between July 2009 and May 2018 

 

Housing 

The housing transaction data include typical structural information such as numbers of bedroom 

and bathrooms, square footage, building age, and transaction prices with sales dates. Since the 

spatial coordination of each property is excluded in NYC’s dataset, the addresses of each 

property were manually batch-geocoded with ArcGIS. Outliers were excluded, such as homes 

with more than 8 bedrooms, lot sizes greater than 5 acres, zero transaction price, and inflation 

adjusted price less than $60,000 or more than $10 million. Consequently, a total of 79,184 and 

90,811 single-family housing units in MDC and NYC, respectively, are analyzed in this study.  

To capture location- and time-specific unobserved factors, the transaction data were clustered by 

64 zip codes in MDC and 157 zip codes in NYC. Housing sales prices are adjusted to January 

2018 prices using each region’s monthly consumer price index for housing. The seasonality is 

also adjusted, and the average adjusted sales prices were $459,000 in MDC and $614,000 in 

NYC. About 70% of all transactions were within price ranges between $150,000 and $800,000 in 
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MDC; and between $300,000 and $800,000 in NYC. The average age of housing structures in 

NYC (around 74 years) is about 24 years older than that of MDC (around 50 years per structure). 

A typical lot size in MDC is 3-times larger than that of NYC, but the average number of stories 

in NYC is twice as high as MDC. Approximate 80% are owner-occupied properties for both 

regions. Only about 5% (in MDC) and 10% (in NYC) of homes are within a five-minute walking 

distance to the oceanfront. About 7% have an ocean view in MDC, but ocean-view properties in 

NYC are just 1%. 

 

Major Storms 

A total of 4 major storms directly influenced MDC, and 3 storms impacted NYC from July 2009 

to May 2018. Although each storm was strong enough to homogeneously impact the entirety of 

each region, every storm has different characteristics. However, the storm characteristics do not 

sufficiently tell me about the causality. Of course, I can anticipate a higher probability of 

flooding from higher rainfalls, but it is not always the case due to interactions with other factors, 

such as rainfall durations and drainage conditions in an area, for example. Thus, in order to 

identify the effects of storm characteristics on housing prices more precisely, 3 types of the most 

common and economically measurable elements (i.e., wind, flood, and storm surge), which 

describe each individual hurricane in the National Hurricane Center’s tropical cyclone reports, 

are used in these analyses. 

 

Table 1.  Hurricane summary (July 2009 – May 2018) 

Region MDC NYC 

Storm Bonnie Nicole Matthew Irma Irene Sandy Andrea 

Date 7/23/2010 10/30/2010 10/6/2016 9/10/2017 8/28/2011 10/29/2012 6/8/2013 

Category TS TS H4 H4 TS ET ET 

Wind (knot) 35 40 115 115 55 65 27 

Pressure (millibar) 1007 994 937 931 963 943 997 

Rain (inch total) 3.25 6.74 1.19 6.25 6.87 0.94 3.12 

Gust (knot) 40 35 35 64 55 54 34 

Storm Surge (feet) 0 0 0 3.7 0 12.65 0 

Notes: Pressure and wind speed are average values of each storm in the study area. Category is 

based on the Saffir-Simpson Hurricane Scale. “H” = Hurricane; “TS” = Tropical Storm; and 

“ET” = Extratropical. 
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Risk Perception Factors 

Since human cognitive processes largely influence the risk perception (Lavell et al., 2012), I 

included the most common cognitive biases to estimate risk perception relating to natural 

hazards in this study. These factors were identified in existing literature from medical and 

psychology fields (Adams & Smith, 2001). Among the four typical mental biases— compression 

bias, availability heuristics, anchoring bias, and miscalibration—which are classified by 

Bogardus Jr, Holmboe, and Jekel (1999), anchoring bias (the tendency to rely heavily on one 

piece of information) and miscalibration (overconfidence about given facts) are less related to 

natural hazard risks due to the uncertain nature of climate disasters. Meanwhile, “availability 

heuristics” refers to the human tendency that relies more on immediate examples that quickly 

come to mind. This case suggests that a newer and more recent storm would have a greater 

influence on housing prices than one less recent. However, the availability heuristics category is 

insignificant for this study due to the relatively short study period with small storm samples. 

Contrarily, the myopia (discounting perceived risks from anticipated future disasters) and the 

concept of amnesia (forgetting past events over time; renamed as risk fadedness in this study), 

proposed by Pryce, Chen, and Galster (2011), are included in the risk perception framework due 

to the subjectivity of risk cognitions. For example, major factors that may influence risk 

perception would be storm frequency and time related variables. 

In addition, insurance and government storm recovery grants could also have an influence on the 

individual risk cognition. Adaptation information can be another important factor in estimating 

effects of adaptation measures. Similar to the precedent studies that risk information without 

actual damage can also impact housing prices (Hallstrom & Smith, 2005; Troy & Romm, 2004), 

expected project information without actual completion or rumors even before announcing an 

adaptation project can influence adjacent property values. 

Thus, the six factors of risk perception utilized for this study include: compression bias, risk 

fadedness, risk myopia, recovery grant effects, dispersion of risk, and expected project 

information (see Table 2). “Compression bias,” as discussed in psychology literature, refers to 

the human’s propensity to exaggerate rare risks and underestimate recurring risks. In this case, a 

less frequent storm experience would have a greater impact on housing prices. In order to 

identify the compression bias for this study, I constructed the storm frequency of each sold 

property within the period between buying and selling. Another factor to note here is 

“forgetfulness.” Risk awareness for a specific event typically decreases over time, unless it is 

traumatic. This human characteristic suggests that risk perception would be much stronger 

immediately after a hurricane strikes, then gradually fading out. To identify this risk fadedness 

effect, I created the elapsed periods between the previous storm strikes and home sales 

transaction dates after hurricanes within a specific effective period for each site. Since this effect 

would eventually vanish at some point, I set appropriate effective periods based on the storm 

frequencies and occurrence intervals of each study site—one-year for MDC and two-year post 

hurricane strikes for NYC—to measure the effect of risk fadedness. 
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By contrast, since the hurricane risk will never be eliminated, fear and anxiety about future risk 

could outweigh the positive effect of risk fadedness, and it could be even greater when 

homeowners experience a longer “peacetime.” However, it is also possible that homeowners can 

underestimate an anticipated future risk (Pryce, Chen, & Galster, 2011), because myopic 

tendency to unrealized future risks can offset the negative effects from the anxiety. To identify 

the effects of risk myopia (which is typically characterized by a tendency or an unwillingness to 

acknowledge the potential risks of future hurricane events), I constructed elapsed periods 

between sales transaction dates and the next hurricane strikes. 

In order to measure the recovery grant and dispersion of risk effects, I also added recovery grant 

amounts approved by the Individual and Households Program (IHP) and a dummy variable that 

indicates flood insurance requirements for individual properties. To estimate the project 

information effect, I included another binary variable that specifies the sales transactions 

between initial announcement and actual completion dates of the adaptation projects. 

 

Table 2.  Description of common risk perception factors and measurement criteria 

Factors Determinants Potential effects Measurement criteria 

Compression 

bias 

More experience Overestimating rare 

risks and 

underestimating 

common ones 

Storm frequency of each sold property 

within the period between buying and 

selling 

Risk 

fadedness 

Length of time elapsed 

since previous event 

Forgetting past events 

over time 

Elapsed period of time between previous 

storm occurrence and home sales 

Risk 

myopia 

Intensity of anxiety with 

respect future risk event  

Underestimating the 

anticipated risk of the 

occurrence future events 

Elapsed period of time between the date of 

housing sales and the occurrence of next 

hurricane event 

Recovery 

grant 

Financial supports Underestimating 

actually realized and/or 

potential risks 

Recovery grant amounts approved by the 

Individual and Households Program 

Dispersion 

of risk 

Insurance coverage Underestimating 

potential risks 

Flood insurance requirements for 

individual properties 

Project 

information 

Rumors and 

information 

Overestimating positive 

impacts of adaptation 

projects 

Sales transaction prices between initial 

project announcement and actual 

completion dates 
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Climate Change Adaptation 

More than 300 individual adaptation projects have been implemented in each region from 2010 

to 2017. Lists of adaptation measures with detailed information are provided by Miami Dade 

County Emergency Management Office and New York Rising Community Reconstruction. The 

information includes project types and locations, initiation and completion dates, adaptation 

goals (i.e., which hazard to be addressed), construction stages, project costs, and detailed project 

descriptions. In order to analyze the effects of the implemented adaptation measures, I reclassify 

the individual projects into 8 categories.  

 

Table 3.  Major public climate adaptation projects and costs (2011– 2017) 

Classification Elements 
Amounts (Million US$) 

MDC1 NYC2 

Infrastructure 

hardening 

Levee, Dike, Seawall, Flood protection berm, 

Breakwater, Elevating roadways, etc. 
171 52.5% 108 6.7% 

Critical facility 

hardening 

Public service building reinforcement 

(excluding raising foundation) 
91 27.9% 833 51.2% 

Drainage 

improvement 

Erosion control, Drainage and stormwater 

system, Beach nourishment, etc. 
7 2.1% 237 14.6% 

Emergency 

preparedness 

Hurricane shelter, Back-up generators, Pump 

installation, At-risk building demolition, etc. 
18 5.5% 21 1.3% 

Recovery 

operation 

Emergency repair for public infrastructure and 

critical facilities, etc. 
39 12.0% 426 26.2% 

Total  326 100% 1,625 100% 

Notes: 1. Miami Dade County’s Local Mitigation Strategies from 2011 Q2 to 2017 Q4. 2. New 

York Rising Community Reconstruction from 2012 Q1 to 2016 Q4. 

 

The first is “infrastructure hardening.” This project type includes levee construction or 

reinforcements, electric power utility projects, flood protection infrastructure, and elevating 

roadways. Since the effects of existing infrastructure would already be reflected in housing 

prices, only newly added or retrofitted projects since 2010 are considered. The second adaptation 

type is “critical facility hardening” and includes all projects related to public service building 

reinforcements. A third type is “drainage improvement.” Man-made green infrastructural 

projects, such as erosion control, stormwater system improvement, and beach nourishment, fall 

into this subcategory. The fourth type, “Coastal Barrier Resources System (CBRS)” such as 

wetlands, lagoons, and salt marshes. The fifth type is “emergency preparedness” and includes 

hurricane ready shelters, on-site power generators, and installation of pump stations. The sixth 

adaptation type is “recovery operation projects.” These include emergency repairs for damaged 

public infrastructure and facilities. The seventh type is “floodplain revision.” This type is a 

modification of base flood elevation by elevating either housing structure or land. The last type is 
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“individual building hardening” such as installing hurricane shutters, storm panels, and 

individual property-specific drainage improvements. The first six categories are public projects, 

each of which tend to be implemented by a local government. The last two types are private 

projects solely based on an individual homeowner’s decision. 

 

 

Figure 2.  Map of site adaptation measures in MDC 

 

 

Figure 3.  Map of site adaptation measures in NYC 
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4. Method 

This study uses a panel data hedonic pricing model in combination with geospatial analysis. 

Hedonic pricing is an economic technique that decomposes a property’s sale price into a set of 

non-market characteristics, thereby quantifying the effects of the inherent attributes associated 

with the property on housing sales price. I applied this pricing model to estimate the impacts of 

climate change adaptation measures on single-family housing transaction prices in MDC and 

NYC over the last decade. Due to the foreseeable effects of risk dynamics, this study also 

includes risk perception factors and individual storm characteristics. A semi-log model is widely 

adopted in the hedonic literature (Panduro & Veie, 2013). In addition, due to expected nonlinear 

effects and the overall site characteristics in this analysis (Freeman III, Herriges, & Kling, 2014), 

the multiple semi-log regression model is most suitable for examining the effects of climate 

change adaptation measures on property values. 

Since individual adaptation projects have multi-valued attributes, constructing multiple 

classifications of adaptation measures is necessary to avoid a potential bias caused by 

categorizing the adaptation projects that can fall into more than one category. For example, on-

site drainage can be improved by either infrastructure hardening, green infrastructural measure, 

or private implementation. Likewise, emergency preparedness can be achieved not only by 

public adaptation, but also by individually (e.g., private back-up electricity generator). To 

eliminate a potential bias caused by the multi-valued attribute, I included two additional 

adaptation classifications by recalibrating the adaptation projects based on (1) project 

characteristics and (2) hazard types which to be addressed (see Figure 4). Hence, a total of four 

sets of regressions are conducted. 

 

 

Figure 4.  Analysis categories of adaptation measures 
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Table 4.  Definition and summary statistics of variables 

Region MDC  NYC 

Category Variables  Mean S.D.  Mean S.D. 

 PRICE Sales price of single-family home ($100,000) 4.59 6.07  6.03 5.22 

Housing BEDROOM Number of bedrooms 3.29 0.86    

Structure BATHROOM Number of bathrooms 2.22 1.07    

 BLDG_SF  Building square footage (thousands) 2.33 1.19  1.63 0.67 

 AREA Lot square footage (thousands) 10.31 8.53  3.28 2.32 

 STORY Number of stories 1.12 0.33  2.47 0.63 

 BLDG_AGE Building age (year) 50.21 20.57  74.32 26.97 

 OCCUPANCY 1 if a property is owner-occupied; 0 otherwise 0.81 0.39  0.80 0.40 

 G-ELEV Ground elevation above sea level (feet) 8.17 2.46  57.47 46.42 

Location METRO 1 if a home is within 400m of metro stations; 0 otherwise 0.003 0.06  0.02 0.15 

 BUS 1 if a home is within 400m of bus stops; 0 otherwise 0.66 0.47  0.23 0.42 

 COMMERCIAL 1 if a home is within 400m of major malls; 0 otherwise 0.003 0.05  0.80 0.40 

 SCHOOL 1 if a home is within 400m of schools; 0 otherwise 0.39 0.49  0.30 0.46 

 BROWNFIELD 1 if a home is within brownfield sites; 0 otherwise 0.10 0.30  0.01 0.11 

 GREEN_VIEW 1 if a home has a green space view; 0 otherwise 0.05 0.22  0.01 0.12 

 GREEN_PROX 1 if a home is within 400m of green spaces; 0 otherwise 0.46 0.50  0.44 0.50 

 OCEAN_VIEW 1 if a home has an ocean view; 0 otherwise 0.07 0.26  0.01 0.10 

 OCEAN_PROX 1 if a home is within 400m of oceanfront; 0 otherwise 0.05 0.22  0.10 0.29 

Market UNEMPLOY Annual unemployment rates by zip code 9.52 3.52  8.46 2.98 

Factor VACANCY Annual vacancy rates by zip code 11.37 8.37  6.91 2.39 

 INCOME Annual median household income (thousand dollar) by zip code 51.59 19.33  65.14 15.45 

Storm H30-150 1 if a home sold between 30 and 150 days post-hurricanes 0.13 0.33  0.10 0.30 

Impact H150-300 1 if a home sold between 150 and 300 days post-hurricanes 0.14 0.35  0.12 0.33 

 H300-450 1 if a home sold between 300 and 450 days post-hurricanes    0.13 0.34 

 H450-600 1 if a home sold between 450 and 600 days post-hurricanes    0.13 0.33 

 H600-750 1 if a home sold between 600 and 750 days post-hurricanes    0.14 0.35 

 H750-900 1 if a home sold between 750 and 900 days post-hurricanes    0.15 0.36 

Storm WIND Sustained wind speed (knots) 12.27 30.05  18.43 26.95 

Feature RAINFALL Total amount of rainfall (inch) 1.10 2.36  1.53 2.44 

 SURGE Storm surge heights of affected homes (feet) 0.08 0.46  2.17 4.67 

Risk FREQUENCY Number of hurricanes between buying and selling home 0.51 1.17  0.8 1.17 

Perception FADEDNESS Elapsed period of time from hurricane to housing transactions 37 89  94 173 

 MYOPIA Elapsed periods between the date of housing sales and the next hurricane 729 654  574 568 

 GRANT 1 if a home receives IHP grant ($100,000); 0 otherwise 0.47 3.96  7.5 60.86 

 INSURANCE 1 if an insurance purchase is required; 0 otherwise 0.36 0.48  0.04 0.20 

 INFORMATION 1 if a home sold between project announcement and completion dates 0.01 0.11  0.01 0.11 

Adaptation T-INFRA 1 if a home is located within 400m of infra hardening; 0 otherwise 0.008 0.092  0.025 0.157 

Type T-FACILITY 1 if a home is located within 400m of facility hardening; 0 otherwise 0.004 0.067  0.029 0.168 

 T-DRAINAGE 1 if a home is located within 400m of drainage projects; 0 otherwise 0.024 0.152  0.008 0.089 

 CBRS 1 if a home is located within CBRS and wetland zones; 0 otherwise 0.166 0.372  0.004 0.065 

 EMERGENCY 1 if a home is located within 400m of hurricane shelters; 0 otherwise 0.063 0.242  0.002 0.045 

 RECOVERY 1 if a home is located within 400m of storm recovery; 0 otherwise 0.001 0.037  0.005 0.071 

 LOMR 1 if a home modifies the base flood elevation; 0 otherwise 0.005 0.069  0.003 0.166 

 PRIVATE 1 if a home reinforces house structures for hurricanes; 0 otherwise 0.004 0.060  0.010 0.098 

Adaptation P-INFRA 1 if a home is located within 400m of infra reinforcements; 0 otherwise 0.005 0.067  0.021 0.143 

Project P-FACILITY 1 if a home is located within 400m of new facilities; 0 otherwise 0.001 0.023  0.001 0.024 

 BLDG_REINF 1 if a home is located within 400m of building hardening; 0 otherwise 0.001 0.032  0.013 0.113 

 P-DRAINAGE 1 if a home is located within 400m of drainage projects; 0 otherwise 0.027 0.162  0.010 0.097 

 RESTORATION 1 if a home is located within 400m of green restoration; 0 otherwise 0.166 0.372  0.007 0.081 

 EQUIPMENT 1 if a home is located within 400m of equipment projects; 0 otherwise 0.001 0.037  0.001 0.035 

 ELEV_STR 1 if a home is located within 400m of structural elevation; 0 otherwise 0.001 0.094  0.001 0.094 

 ELEV_LAND 1 if a home is located within 400m of land elevation; 0 otherwise 0.005 0.069  0.003 0.166 

 SHELTER 1 if a home is located within 400m of hurricane shelters; 0 otherwise 0.025 0.158  0.004 0.199 

 CAPACITY 1 if a home is located within 400m of adaptive capacity; 0 otherwise 0.001 0.025  0.024 0.153 

Adaptation ADP-WIND 1 if a home is located within 400m of wind adaptation; 0 otherwise 0.002 0.045  0.015 0.122 

Purpose ADP_FLOOD 1 if a home is located within 400m of flood prevention; 0 otherwise 0.182 0.386  0.002 0.039 

 ADP_SURGE 1 if a home is located within 400m of storm surge projects; 0 otherwise 0.020 0.139  0.007 0.081 
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Storm impacts on housing market: 

The first set is to examine whether storms impact housing prices or not, because if there is no 

pricing effect in the first set, further finding the adaptation effects on housing prices are not 

logically meaningful. The second to fifth sets are to identify the risk perception and adaptation 

effects on housing prices. In order to estimate the storm impacts on housing transaction prices, I 

constructed specific sales time windows after each storm. As a rule of thumb, damage recovery 

generally takes about 5 months in the study areas, and the housing market remains relatively 

slow-moving. I set the market impact intervals for every 150 days. For example, the first sales 

time window includes all transactions between 30 and 150 days after each storm. The second 

window includes the transactions occurring between 150 and 300 days after an event. Since a 

given housing sales transaction typically takes around one month on average, the transaction 

decisions immediately after storm strikes would not be related to the storm experiences. Thus, 

the transactions within 30 days after storms were excluded from the first sales window. The 

equation of the first set for estimating storm effects in different sales windows is specified as 

follows: 

 

(1) 𝑙𝑛 𝑃𝑖𝑐𝑡 =  𝛼𝑐𝑡 +  𝛽′𝑋𝑖 + 𝛾′𝑁𝑖 + 𝜂′𝑀𝑖𝑐𝑡 

+𝛿′𝑆𝑡𝑜𝑟𝑚𝑖𝑐𝑡 +  𝜀𝑖𝑐𝑡 

 

where 𝑙𝑛 𝑃𝑖𝑐𝑡 is the natural log of the inflation and seasonality adjusted sales price of single 

family property 𝑖 in zip code 𝑐 in time (date) 𝑡, 𝛼𝑐𝑡 are zip code−time effects, which allow for 

housing price variation over time at the zip code level, 𝑋𝑖 and 𝑁𝑖 are vectors of house and 

location characteristics with coefficient 𝛽 and 𝛾, respectively. 𝑀𝑖𝑐𝑡 is a vector of market factors 

to property 𝑖 in zip code 𝑐 in time (year) 𝑡 with coefficient 𝜂. 𝑆𝑡𝑜𝑟𝑚𝑖𝑐𝑡 is housing transaction 

dummies representing the sales windows post-hurricanes with 150 days interval (e.g. 30-150 

days, 150-300 days, and 300-450 days) with coefficient 𝛿, and 𝜀𝑖𝑐𝑡 is an error-term of property 𝑖 

in zip code 𝑐 in time (year) 𝑡. All specifications also include year and zip code dummies to 

control for time-specific and spatial fixed effects in the housing market. In all models, the 

standard errors are clustered at the zip code level. 

The set of controls 𝑋𝑖 includes 8 housing structural characteristics for MDC and 6 characteristics 

for NYC. The common variables are building square footage, lot size, stories, housing age, 

occupancy status, and land elevation. Since the information of bedroom and bathroom counts in 

NYC is not publicly available, these variables are included only in MDC’s model specifications. 

𝑁𝑖, the location characteristics, consists of 9 binary variables representing 5-minute walkability 

and views. The variables include subway stations, bus stops, major malls, schools, brownfields, 

green spaces, oceanfront, green space view, and ocean view. 𝑀𝑖𝑐𝑡, the market characteristics, 

includes unemployment rates, vacancy rates, and median household incomes. 
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Valuing climate change adaptation measures: 

The second to fourth sets estimate the pricing effects of adaptation measures on housing 

transactions. The model specifications include storm characteristics, as well as the factors that 

could influence risk perception in order to identify how storm heterogeneity and risk perception 

factors interact with the effects of adaptation measures.  

To estimate the multi-valued attributes of adaptation measures, the equations for testing three 

reclassified categories of adaptation measures (by the attributes of adaptation type, project 

characteristics, and hazard type to be adapted) are as follows: 

 

(2) 𝑙𝑛 𝑃𝑖𝑐𝑡 =  𝛼𝑐𝑡 +  𝛽′𝑋𝑖 + 𝛾′𝑁𝑖 + 𝜂′𝑀𝑖𝑐𝑡 

+𝛿′𝐻𝑖𝑡 + 𝜑′𝑅𝑖 + ∑ 𝜎𝑗  𝑇𝑦𝑝𝑒𝑗,𝑖𝑐𝑡

8

𝑗=1

+  𝜀𝑖𝑐𝑡 

 

where 𝐻𝑖𝑡 is a vector of hurricane characteristics to property 𝑖 in time (year) 𝑡 with coefficient 𝛿 

and includes three damage types (flood, wind, and storm surge) in the specification. 𝑅𝑖 is a 

vector of the risk perception factors to property 𝑖 with coefficient 𝜑. This attribute group 

includes storm frequencies to test compression bias; the elapsed date counts between storm 

strikes and home sales within a specific period (one year for MDC and two years for NYC) after 

a hurricane strikes for the effects of risk fadedness; the elapsed dates from a housing transaction 

to a next hurricane for the effects of risk myopia; the amounts of public grants; a binary variable 

for flood insurance requirement; and a dummy variable to distinguish home sold between 

adaptation project announcement and project completion dates for the effects of adaptation 

information. 𝑇𝑦𝑝𝑒𝑗 is the eight variables of the adaptation project type and includes 

infrastructure, critical facility, drainage system, natural barriers (CBRS and wetlands), 

emergency preparedness, recovery operation, floodplain revision (raising land and structural 

foundation), and private building hardening that impact housing price within the distances of 

400m from the individual adaptation project. To distinguish the effects of adaptation projects that 

have already been completed from the projects under construction at the point of sales 

transaction, I only include completed adaptation projects prior to a housing sale. 

 

(3) 𝑙𝑛 𝑃𝑖𝑐𝑡 =  𝛼𝑐𝑡 +  𝛽′𝑋𝑖 + 𝛾′𝑁𝑖 + 𝜂′𝑀𝑖𝑐𝑡 

+𝛿′𝐻𝑖𝑡 + 𝜑′𝑅𝑖 + ∑ 𝜎𝑗  𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠𝑗,𝑖𝑐𝑡

10

𝑗=1

 

 

where 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠𝑗 is the eleven variables of the adaptation measures classified by project 

characteristics. This attribute group is recategorized by infrastructure reinforcement (levee, dike, 
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seawall, breakwater, etc.), new facility construction, public (existing critical facilities) and 

private (single-family houses) building reinforcement, drainage improvement, green space 

restoration, equipment installation, structural elevation, land elevation, hurricane shelters, and 

neighborhood system improvement projects (mainly adaptive capacity programs).  

 

(4) 𝑙𝑛 𝑃𝑖𝑐𝑡 =  𝛼𝑐𝑡 +  𝛽′𝑋𝑖 + 𝛾′𝑁𝑖 + 𝜂′𝑀𝑖𝑐𝑡 

+𝛿′𝐻𝑖𝑡 + 𝜑′𝑅𝑖 + ∑ 𝜎𝑗  𝐻𝑎𝑧𝑎𝑟𝑑𝑗,𝑖𝑐𝑡

4

𝑗=1

 

 

where 𝐻𝑎𝑧𝑎𝑟𝑑𝑗 is the three variables which are classified by hazard types to be addressed by the 

adaptation measures and includes: wind, flood, and storm surge.  

 

All other variables are the same as in model (1). Both time (year) and spatial (zip code) fixed 

effects are applied in all specifications, and the standard errors are clustered at the zip code level 

in each region. 
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5. Results and discussion 

The regression results indicate that the relationship between the dependent variable and the 

independent variables is strong (adjusted R2 = 0.75 and 0.63 for MDC and NYC, respectively). 

The majority of the variables’ p-values are smaller than 0.05, and the joint hypothesis f-statistics 

on each attribute group rejects the null hypothesis at the 1% level. Therefore, the panel data 

hedonic regressions are statistically significant. 

 

Table 5.  Results of hedonic regression (Model 1) 

Category Price (logged) 
 Model 1    

 MDC B MDC β NYC B NYC β 

Housing BEDROOM  0.021** 0.023**   

Structure BATHROOM  0.069** 0.092**   

 BLDG_SF   0.020** 0.291** 0.020** 0.251** 

 AREA  0.001** 0.089** 0.004** 0.191** 

 STORY  0.106** 0.044** 0.036** 0.042** 

 BLDG_AGE  -0.002* -0.047* -0.002** -0.083** 

 OCCUPANCY  0.107** 0.052** 0.012** 0.009** 

 G-ELEV  0.006 0.017 0.009** 0.078** 

Location METRO  -0.118** -0.008** -0.036 -0.010 

 BUS  -0.065** -0.039** -0.018* -0.014* 

 COMMERCIAL  -0.005 -0.000 -0.044** -0.033** 

 SCHOOL  -0.036** -0.022** -0.016** -0.013** 

 BROWNFIELD  -0.135* -0.050* -0.039** -0.008** 

 GREEN_VIEW  -0.004 -0.001 0.033 0.007 

 GREEN_PROX  -0.009 -0.006 0.011 0.010 

 OCEAN_VIEW  0.140** 0.046** 0.036 0.007 

 OCEAN_PROX  0.213** 0.058** -0.073 -0.040 

Market Factor UNEMPLOY  -0.007 -0.030 -0.011** -0.060** 

 VACANCY  -0.327 -0.034 -0.117 -0.005 

 INCOME  -0.003 -0.081 0.004** 0.142** 

Storm Impact H30-150  -0.024** -0.010** -0.020** -0.011** 

 H150-300  0.023** 0.010** -0.032** -0.020** 

 H300-450    -0.016* -0.010* 

 H450-600    -0.031** -0.019** 

 H600-750    -0.006 -0.004 

 H750-900    0.010* 0.007* 

 Constant  12.042**  12.439**  

Observations  79,184  90,811  

Number of clusters (zip code)  64  157  

Adjusted R2  0.746  0.629  

Spatial Fixed Effects (zip code)  YES  YES  

Time Fixed Effects (year)  YES  YES  

Notes: * p < 0.05, ** p < 0.01. B, unstandardized coefficients; β, standardized coefficients. 
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As anticipated, all the housing structural variables have a positive relationship with transaction 

prices. More rooms and stories, larger building size and lot square footage, recently-built homes, 

and owner-occupied homes are associated with a housing sales price increase. Among the 

housing structural variables, the coefficients of building square footage and lot size variables in 

both regions are particularly strong (see Table 5, standardized beta coefficients). 

Proximity to subway stations, bus stops, and schools has a negative relation to housing price in 

both regions. The “net nuisance” effect, caused by the public transportation and school proximity 

penalty such as traffic congestion and noise, could overshadow the proximity benefits (Sah, 

Conroy, & Narwold, 2016). Five-minute walkability to major commercial facilities, such as a 

major mall or shopping center, has a negative influence on housing prices in NYC. Since this 

variable is not statistically significant in MDC, the strength of nuisance or disamenity effects 

from having commercial facilities nearby, may also differ based upon population densities. 

Brownfields are negatively associated with housing prices at the 5% and 1% significance levels 

in MDC and NYC, respectively. Contrasting results of green space and ocean amenity variables 

were observed. As with the results on the green space variables in NYC, green space proximity 

and view often have a positive relation to housing prices in hedonic literature. However, these 

green space amenity variables have a negative sign, as well as not being statistically significant 

in MDC. A high outside temperature and the location of green spaces (about 50% of MDC’s 

parks are located within a 5-minute walking distance of coastlines) would counteract the positive 

green space effects in MDC. Based on my observation from a site visit, just a few dog sitters and 

homeless people used the parks and green spaces during the daytime. As expected, ocean view 

and oceanfront proximity are strong positive factors on housing prices in MDC, but surprisingly 

these coastal amenities are not statistically significant (at the 10% level) in NYC. From this 

result and the fact that MDC has many more accessible sandy beaches, I surmise that coastal 

recreation opportunities would boost positive effects of the coastal amenity on housing prices. 

 

Storm impact on housing market 

The regression results show that hurricanes have a strong adverse impact on housing transaction 

prices. The coefficient of H30-150 variable implies that single-family properties sold between 30 

and 150 days after a storm strike sell at a 2.4% and 2% discount on average compared with 

homes sold in the other period in MDC and NYC, respectively (see Table 5). The negative 

impact of the storm becomes positive after five months following storm occurrences in MDC, 

while the adverse effects persist much longer in NYC, lasting around a year and a half. This 

contradictory impact over time signifies that risk perception and job market factors may be 

stronger than the power of housing market dynamics. If hurricanes affect the local housing 

supply and demand, the coefficient of H30-150 should be positive, due to the supply decrease 

caused by storm-induced property damages, but the negative result was observed in this study. 

This result indicates either the majority of hurricane damaged properties are still available in the 

market, or the local housing market dynamics are not much influenced by hurricanes. However, 
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two plausible factors (job market and risk perception) may explain that there are negative 

impacts on housing prices during the first five months, followed by positive turns. Since 

hurricanes cause demand shocks in the job markets (Belasen & Polachek, 2008), these 

unemployment shocks can trigger increases in mortgage delinquency and foreclosure rates, 

resulting in housing vacancy escalation. The economic decline caused by hurricanes deters the 

inflow of job seekers, and subsequently higher unemployment rates can negatively impact the 

housing transaction prices. Another reason would be that a stronger risk awareness makes people 

hesitate to buy-in. Consequently, housing demand decreases and, thus, housing prices drop for a 

few months. 

 

Storm characteristics and risk perception factors:  

The majority of the storm characteristics and risk factors impact housing transaction prices. 

Storms that are accompanied by more rainfall have a negative impact on housing prices in NYC. 

A stronger storm surge is also associated with housing sales price depreciation in both regions. 

Surprisingly, the results indicate that storms accompanying a higher wind speed have a positive 

influence on housing prices in NYC. A plausible explanation is that the wind factor often 

influences a storm’s movement speed. It is not always the case, but generally the forwarding 

wind speed is one of the factors that determining the movement speed. If the movement speed is 

slow, greater flood damage would be anticipated due to increased rainfall on already fully 

saturated soils. Another possible reason supporting the result could include overestimation of 

wind factor in the hurricane information. Current hurricane intensity (i.e. the Saffir-Simpson 

Scale) is largely based on sustained wind speeds, excluding other significant factors. However, 

there is much historical evidence (such as Super Storm Sandy) to show that other storm 

characteristics should also be considered as well.  

Among the risk perception variables, risk frequency factor has a negative effect on housing 

prices in MDC but is not statistically significant in NYC. The storm frequency is calculated by 

counting the number of storm experiences that a homeowner has before the home transaction to a 

new homebuyer, and the homeowner’s risk perception to the storms is affected by the frequency 

because the compression bias is applied—more storm experiences would lead homeowners to 

underestimate the actual risks, while a rare storm experience exaggerates the home seller’s risk 

cognition. Based on this notion, the counterintuitive result indicates that the compression bias 

would not be present in homes sold without any storm experience. In fact, about 82% of single-

family homes (or 64,598) were transferred without having a storm experience in MDC, and 66% 

of properties (or 59,759) have been sold with no storms experienced by the home seller in NYC. 

FEDEDNESS has a positive impact on housing prices in both regions, while MYOPIA and 

GRANT are associated with home prices increase in NYC but are not statistically significant in 

MDC. The results confirm that homeowners have tendencies to forget past events over time (risk 

fadedness effect) and to underestimate anticipated future disasters (risk myopia effect).  
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Table 6.  Results of hedonic regression (Model 2-4) 

Variables 
 Model 2   Model 3   Model 4  

 MDC NYC  MDC NYC  MDC NYC 

BEDROOM  0.021**   0.021**   0.020**  

BATHROOM  0.068**   0.069**   0.071**  

BLDG_SF   0.019** 0.020**  0.019** 0.020**  0.019** 0.020** 

AREA  0.001** 0.004**  0.001** 0.004**  0.001** 0.004** 

STORY  0.101** 0.036**  0.101** 0.036**  0.105** 0.036** 

BLDG_AGE  -0.002* -0.002**  -0.002 -0.002**  -0.002 -0.002** 

OCCUPANCY  0.106** 0.012**  0.106** 0.012**  0.106** 0.012** 

G-ELEV  0.013* 0.009**  0.014* 0.009**  0.013* 0.009** 

METRO  -0.090* -0.034  -0.106* -0.033  -0.110** -0.034 

BUS  -0.055** -0.018*  -0.056** -0.019**  -0.053** -0.019* 

COMMERCIAL  -0.010 -0.042**  -0.021 -0.043**  -0.028 -0.043** 

SCHOOL  -0.025* -0.016**  -0.030** -0.016**  -0.033** -0.016** 

BROWNFIELD  -0.136* -0.042**  -0.135* -0.044**  -0.134* -0.041** 

GREEN_VIEW  -0.005 0.031  -0.005 0.030*  -0.006 0.032 

GREEN_PROX  -0.008 0.012  -0.007 0.011  -0.010 0.011 

OCEAN_VIEW  0.117* 0.053  0.118* 0.050  0.124* 0.049 

OCEAN_PROX  0.196** -0.040  0.202** -0.043  0.204** -0.044 

UNEMPLOY  -0.007 -0.011**  -0.007 -0.011**  -0.007 -0.011** 

VACANCY  -0.293 -0.120  -0.280 -0.147  -0.307 -0.135 

INCOME  -0.003 0.004**  -0.003 0.004**  -0.003 0.004** 

WIND  0.003 0.008**  0.002 0.008**  0.002 0.008** 

RAINFALL  -0.017 -0.098**  -0.016 -0.098**  -0.016 -0.099** 

SURGE  -0.015* -0.041**  -0.016* -0.041**  -0.017* -0.041** 

FREQUENCY  -0.006** 0.030  -0.006** 0.029  -0.006** 0.030 

FADEDNESS  0.013** 0.006*  0.013** 0.006*  0.013** 0.006* 

MYOPIA  -0.002 0.007**  -0.003 0.007**  -0.003 0.007** 

GRANT  0.032 0.003*  0.030 0.003*  0.030 0.003* 

INSURANCE  0.069** -0.070*  0.071** -0.077*  0.077** -0.075* 

INFORMATION  0.056 -0.003  0.062 -0.001  0.062 -0.001 

T-INFRA  0.265** -0.028       

T-FACILITY  0.121* 0.023       

T-DRAINAGE  0.032 0.010       

CBRS  0.097** 0.027*       

EMERGENCY  -0.056* 0.071*       

RECOVERY  0.109 -0.136       

LOMR  -0.033 0.077**       

PRIVATE  0.049 0.101**       

P-INFRA     0.342** -0.037    

P-FACILITY     0.357** 0.014    

BLDG_REINF     0.091** 0.071**    

P-DRAINAGE     0.038 0.020    

RESTORATION     0.099** 0.057**    

EQUIPMENT     0.046 0.102    

ELEV_ STR     0.066** 0.143**    

ELEV_ LAND     -0.035 0.077**    

SHELTER     -0.035 0.146    

CAPACITY     0.033 0.026    

ADP-WIND        0.023 0.042 

ADP_FLOOD        0.053* 0.077 

ADP_SURGE        0.158* 0.055** 

Constant  11.927** 12.417**  11.919** 12.430**  11.921** 12.425** 

Observations  79,184 90,811  79,184 90,811  79,184 90,811 

Adjusted R2  0.750 0.630  0.749 0.630  0.748 0.629 

Notes:  * p < 0.05, ** p < 0.01. 
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Surprisingly, having a mandatory flood insurance requirement is associated with housing price 

increases in MDC. A possible reason would be a limited supply of available housing inventory 

which is free from the flood insurance requirement. In fact, about 36% of MDC’s single-family 

homes (or 28,816) are required to purchase flood insurance, while only 4% of single-family 

residences (or 3,792) in NYC are located within the mandatory flood insurance requirement zones. 

Thus, limited numbers of housing inventory that have no flood insurance requirement could make 

the insurance factor less significant than other location factors in relation to housing sales prices in 

MDC. The project information has no effect on housing prices in both regions. Although 

homeowners would have a positive expectation about future adaptive projects, the nuisance 

effects from the construction activities including noise, dust, and traffic congestion, would offset 

the positive effects. 

 

Effects of adaptation measures: 

The eight categories of adaptation measures were examined by estimating each type of 

application. Many of these adaptation measures in this classification are statistically significant, 

at the 5% level. CBRS and wetlands have a positive impact on housing transaction prices in both 

regions (See Table 6, Model 2). The green infrastructural projects in MDC are characterized by 

enhancing its functionality through expanding and retrofitting the existing features, while NYC 

projects have focused more on restoring natural elements such as green spaces and sand dunes. 

Regardless of this distinction, overall green infrastructural projects in both regions preserve 

accessibility to natural amenities and recreational opportunities as well as provide a similar 

function of planned retreat strategy by creating room to mitigate adverse impacts of hurricanes. 

Infrastructure hardening and critical facility reinforcement projects are associated with housing 

price increases, while modifying floodplain has a strong positive impact in NYC. The detailed 

project profiles distinguish that MDC has invested in active infrastructural projects including 

levee reinforcement and construction of flood protection berms. Meanwhile, the majority of 

NYC’s infrastructural projects were relatively small and passive infrastructural projects, such as 

roadway elevation, pavement resurfacing, and breakwater installation for erosion controls. These 

passive infrastructural projects would not have an influence as strong as the impact of active 

infrastructural projects on an individual homeowner’s risk cognition. 

EMERGENCY variable has a contradictory result—emergency preparedness projects including 

hurricane shelters have a negative impact on housing prices in MDC. In contrast, a positive 

impact on the same variable is observed in NYC. Hurricane shelters in MDC are mostly located 

in distressed areas, whereas the shelters in NYC are distributed more evenly. Although the zip 

code fixed effect is applied in the analysis model, the fixed effect does not capture this finer 

market characteristic. No impact on drainage improvement and recovery operation variables is 

observed at the 10% significance level in both regions.  
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To specify the effects of multi-valued assets, all the adaptation projects were reclassified by 10 

adaptation project characteristics. The majority of tested variables are statistically significant at 

the 1% level. Building reinforcement, green space restoration, and structural elevation have a 

positive impact on housing transaction prices in both regions (see Table 6, Model 3). In addition, 

infrastructure reinforcement and new facility construction are associated with housing price 

appreciation in MDC, while raising base flood land elevation has a positive impact in NYC. 

Infrastructure reinforcement and new facility variables in MDC have particularly strong 

coefficients, while structural elevation projects produce relatively higher coefficients in NYC. 

With respect to another set of reclassifications by adaptation projects for each of three hazard 

types, the projects that address flood and storm surge are positively associated with housing 

prices in MDC. In NYC, only the adaptation projects for storm surge protection have a positive 

impact on housing transaction prices. Particularly strong coefficient values were observed for the 

storm surge adaptation projects for MDC (see Table 6, Model 4). 

Taken together, the following three attributes: the natural green infrastructural measures (such 

coastal barrier resources and wetlands), building reinforcement (especially by structural 

elevation), and projects to prepare for storm surge are revealed to have positive pricing factors 

with the statistical significance of p-value less than 5% in both regions. By region, the positive 

effects of publicly operated hard and green infrastructure measures are pronounced in MDC; 

while the positive impacts of private (individual) adaptation measures, such as private building 

reinforcement, raising house foundation, modifying land elevation, are particularly strong in 

NYC. 

 

 

Figure 5.  Home sales price changes based on the effectiveness of adaptation measures (scale 

value to 1 for avg. price) 
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To identify the market effects of adaptation efficacy, I normalized housing sales prices that 

affected by well-functioning and malfunctional adaptation measures respectively to the average 

transaction prices of the homes sold within the first sales window. The indexed values indicate 

that effective adaptation measures (homes affected by the adaptation measures that have a 

positive impact on housing prices in each site) generally appreciate sales prices faster within 5 

months of hurricane occurrences in both regions. Similarly, when adaptation is malfunctioning 

(homes influenced by the adaptation measures that have no impact or negative values), a rapid 

depreciation is also observed in MDC within the same period (see Figure 5).   

With respect to the discrepancy of the analysis results between both regions, I assume that the 

effects of local adaptation measures interact with regional idiosyncrasies such as socio-

environmental characteristics, urban structures, and economic conditions. For instance, MDC has 

a stronger capacity to deal with major storms due to more frequent experiences. Storm surge and 

flood vulnerabilities in NYC could be greater than MDC, because NYC has a much higher 

population density than MDC, as well as a particular geographic characteristic called “New York 

Bight” (a curve shaped indentation where the New York and New Jersey coastlines meet). In 

fact, when Super Storm Sandy made landfall in NYC in 2012, it had been downgraded to an 

“Extratropical Storm” with less than 1 inch of rainfall. However, the damages from the 

accompanying storm surges were disastrous, due to the dense population and at-risk 

infrastructure, such as underground tunnels and transportation (Gerstacker, 2015). Thus, it is not 

surprising that the impacts of land and structural elevation projects on housing prices are 

pronounced in NYC.  

In addition, scales and amounts of local investments on adaptation measures would also be a 

significant impact factor. For example, MDC has invested more on infrastructure and critical 

facility hardening projects, whereas a considerable numbers of building reinforcement projects 

have been implemented by individual homeowners in NYC. As a result, a particularly strong 

impact has been observed on public infrastructure adaptation measures in MDC and private 

solutions in NYC. Costs of adaptation could also be localized and thereby offsetting direct 

benefits of adaptation—since main beneficiaries of nearshore structural protections are most 

likely homeowners in proximity to the shoreline, local governments could charge these 

homeowners a levy to cover expenses of bond issuance of new construction and maintenance 

(Jin et al., 2015). Potential economic benefits of risk reduction by such protective measures 

could be offset by the special tax imposition. Therefore, the effects of adaptation measures 

should rely more on locally analyzed results.  
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6. Conclusion 

This study contributes to the literature on the effects of climate change adaptation measures on 

risk perception as well as real estate market. Using single-family housing transactions, major 

storm data, and implemented adaptation measures over the last decade, I have examined how the 

adaptation measures, in interacting with risk perception and storm specific characteristics, 

influence housing markets in these coastal communities. The results shed light on implemented 

climate adaptation effects on housing market dynamics. From the first set of analysis models, I 

confirmed that the impacts of major storms on coastal housing prices are closely related to a 

temporary change in housing prices. 

The study highlights the fact that risk perceptions are influenced by the effects of adaptation 

measures is confirmed. Having natural green infrastructural adaptation projects within a 400-

meter proximity is associated with a housing price appreciation by 9.7% in MDC and 2.7% in 

NYC (holding all other variables constant). Structural elevation provides a 6.6% housing price 

appreciation in MDC and 14.3% in NYC, respectively. Adapting for storm surges provides the 

largest positive impact on housing prices by 15.8% in MDC among the variables that have a 

consistent result throughout the regions. Unlike other large-scale development projects or urban 

infrastructure provisions, adaptation project information does not effectively influence reducing 

adverse storm risks due to “net negative nuisance” effects. 

Together, adaptation effects and market resilience can be improved by the following 

recommendations for each region. For MDC, current parks and green spaces are not functionally 

effective because of the low utilization and potential backyard effects—i.e. private backyards 

have more value than public open spaces (Peiser & Schwann, 1993). Improving the design of 

parks and green spaces by adding adaptive functions can enhance community resilience. 

Although hard and green infrastructural adaptive measures provide a strong positive impact on 

housing prices, investment on drainage improvement is far behind (2.1% of their overall 

adaptation budget spending). Utilizing these positive attributes of hard and green infrastructure 

for drainage improvement, such as expanding canal and riparian buffers, could effectively 

decrease potential flood risk. 

For NYC, the study suggests that hard infrastructural projects have a negative influence on 

housing prices due to scale and distribution issues. In this case, protecting key urban 

infrastructure, such as subway systems and underground tunnels, could be more effective for 

housing market resilience because such measures can enhance adaptive capacity in this high 

density setting. Furthermore, recovery operation does not improve adaptive capacity (because it 

does not exceed the level of past capacity), while investment for emergency preparation projects 

is very low, as much as 1.3% of their total spending on adaptation. In this respect, establishing 

emergency preparation funding and grant programs would be a potential solution to enhance 

market resilience.  



John R. Meyer Dissertation Fellowship Working Paper 

25 

 

These complementary policy suggestions may possibly lead a convergence between public and 

private adaptations. Since a relatively short history of active investments on mitigating climate 

risks resulted in imbalance of climate strategies due to its local dependency character, the local 

governments may invest more in the projects that they have neglected so far. Consequently, 

future adaptation measures would be more balanced, mixed, and moved toward to convergence. 

Since climate risk is unavoidable in coastal areas, an accurate understanding of the effects of 

adaptation measures on housing prices will greatly help those who engage in real estate 

investment and development in coastal areas. Furthermore, this study helps to provide a clearer 

understanding of how climate adaptation efforts and their interaction with storm characteristics 

and risk perception can also be directly or indirectly related to improving a coastal community 

resiliency. 
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